Техническая эксплуатация фундаментов подвалов придомовых территорий. Ремонт и усиление фундаментов зданий и сооружений. Техническое обслуживание и ремонт фундаментов

Введение 5
Глава 1. Содержание и задачи технической эксплуатации воинских зданий и сооружений 6
1.1. Долговечность и износ зданий и сооружений 6
1.2. Системы технической эксплуатации, ремонта и реконструкции зданий и сооружений 7
1.3. Состав работ при проведении текущего и капитального ремонтов 11
Глава 2. Демонтажные работы при капитальном ремонте и реконструкции зданий и сооружений 16
2.1. Общие положения о демонтаже строительных конструкций и оборудования 16
2.2. Технология производства демонтажных работ 19
Глава 3. Основные методы и особенности технологии сноса зданий и сооружений 34
3.1. Общие положения организации работ по сносу зданий и сооружений 34
3.2. Технология выполнения работ по сносу объектов 39
Глава 4. Техническая эксплуатация и технология ремонта и усиления фундаментов 58
4.1. Техническая эксплуатация фундаментов 58
4.2. Возможные дефекты фундаментов и причины их возникновения 60
4.3. Технология ремонта и усиления фундаментов 64
Глава 5. Техническая эксплуатация и технология ремонта кровельных покрытий и крыш 82
5.1. Техническая эксплуатация и дефекты кровельных покрытий и крыш 82
5.2. Ремонт кровельных покрытий 90
5.3. Ремонт и усиление элементов крыш из деревянных конструкций 95
5.4. Замена деревянных конструкций крыш на сборные железобетонные элементы 105
Глава 6. Техническая эксплуатация и технология ремонта, усиления и реконструкции перекрытий 112
6.1. Техническая эксплуатация и возможные дефекты перекрытий 112
6.2. Технология ремонта и усиления перекрытий по деревянным балкам 115
6.3. Технология ремонта и усиления перекрытий по металлическим балкам 121
6.4. Технология устройства перекрытий и покрытий из сборных железобетонных конструкций 124
6.5. Технология ремонта и усиления железобетонных перекрытий 138
Глава 7. Техническая эксплуатация и технология ремонта, усиления стен 146
7.1. Дефекты стен и причины их возникновения 146
7.2. Технология работ по ремонту, усилению и утеплению каменных стен 150
7.3. Технология работ по ремонту, усилению и утеплению бетонных и железобетонных конструкций стен 165
Глава 8. Техническая эксплуатация, технология ремонта и восстановления гидроизоляции зданий и сооружений 171
8.1. Техническая эксплуатация и возможные дефекты гидроизоляции зданий и сооружений 171
8.2. Технология работ при ремонте и восстановлении гидроизоляции зданий и сооружений 174
Глава 9. Техническая эксплуатация и технология ремонта перегородок, столярных изделий, лестниц и полов 184
9.1. Техническая эксплуатация и технология ремонта перегородок и столярных изделий 184
9.2. Техническая эксплуатация и технология ремонта лестниц 189
9.3. Техническая эксплуатация и технология ремонта полов 193
Глава 10. Техническая эксплуатация и ремонт отделочных покрытий 203
10.1. Техническая эксплуатация и технология ремонта наружной отделки 203
10.2. Техническая эксплуатация и технология ремонта внутренней отделки 209
Глава 11. Благоустройство и содержание территорий военных городков 215
11.1. Общие положения 215
11.2. Инженерное оборудование территорий 216
11.3. Дорожные работы 220
11.4. Ограждение территорий 231
11.5. Озеленение военных городков 234
Список литературы 249

Наличие трещин на стенах, искривление рядов кладки, отрыв наружных стен от внутренних, наличие на поверхности стен подполья или подвала влажности являются причиной неисправности в фундаментах или основании здания.

Основными причинами деформации грунтовых оснований являются: превышение расчетных нагрузок на основание; внешние динамические нагрузки (сейсмические, взрывные, движение транспорта и т.д.); малая глубина заложения фундаментов; ошибки при проведении инженерно-геологических изысканий; ошибки при проектировании и т.д.

Незначительные и равномерные деформации (осадки) для зданий не опасны, большие и неравномерные деформации (просадки) могут привести к образованию трещин, разрушению конструкции, авариям зданий и сооружений.

Значительные осадки, равномерные по всему периметру зданий, не вызывают серьезных деформаций, не препятствуют нормальной эксплуатации здания. Опасными являются неравномерные осадки.

Здания подразделяются по чувствительности на малочувствительные и чувствительные. Малочувствительными являются здания, проседающие как единое пространственное целое равномерно или с креном, и здания, элементы которых шарнирно связаны.

Чувствительными к неравномерным осадкам являются здания с жестко связанными элементами, смещение которых может привести к значительным деформациям.

Предельные разности осадок отдельных частей оснований фундаментов колонн или стен зданий не должны превышать 0,002 расстояния между этими частями.

Предельные значения средних осадок оснований зданий:

  • крупнопанельных и крупноблочных - 8 см;
  • с кирпичными стенами - 10 см;
  • каркасных - 10 см;
  • со сплошным железобетонным фундаментом - 30 см.

В зависимости от характера развития неравномерных осадок основания и жесткости здания различают следующие формы деформаций: крены, прогибы, выгибы, перекосы, кручение, трещины, разломы и т.д.

Перекос возникает, когда резкая неравномерность осадок развивается на коротком участке здания. Прогиб и выгиб связаны с искривлением здания. Кручение возникает при неодинаковом крене по длине здания, при котором в двух сечениях здания он развивается в разные стороны. Предельное значение крена не должно превышать 0,004 высоты здания. Прогибы для крупнопанельных зданий не должны превышать 0,0007 длины участка, на котором проверяют прогиб, для кирпичных и блочных - 0,00013.

От воздействия различных факторов могут развиваться осадки, вызванные изменением структуры грунта, которая может нарушаться вследствие воздействия грунтовых вод, метеорологических воздействий, промерзания, оттаивания и высыхания.

При нарушении структуры и потере несущей способности основания в процессе эксплуатации применяют различные способы укрепления грунта: уплотнение, закрепление, замену.

Второй основой здания являются фундаменты, работа которых протекает в сложных условиях. Они подвергаются внешним силовым и несиловым воздействиям. Силовые - это нагрузки от вышележащих конструкций, отпор грунта, силы пучения, сейсмические удары, вибрация и т.д.; несиловые воздействия - температура, влажность, воздействие химических веществ и т.д.

Все эти воздействия могут привести к появлению напряжений и разрушений в фундаментах, к нарушению эксплуатационного режима здания.

Для обеспечения необходимых условий эксплуатации зданий фундаменты должны отвечать ряду требований: прочности, долговечности, устойчивости на опрокидывание, на скольжение, быть стойкими к воздействию грунтовых и агрессивных вод.

На эксплуатационные свойства фундаментов оказывает влияние конструктивная схема.

При приемке здания в эксплуатацию необходимо тщательно проверить качество устройства гидроизоляции фундаментов и подвальных частей.

Основной причиной физического износа и снижения несущей способности фундаментов является разрушающее действие грунтовых и поверхностных вод, поэтому необходимо выполнить мероприятия по отводу поверхностных вод и понижению уровня грунтовых вод.

Для предохранения грунта у фундамента здания и стен подвала от увлажнения поверхностными водами устраивают отмостку шириной не менее 0,8 м с уклоном от здания 0,02-0,01 для асфальтовых и 0,15-0,1 для булыжных отмосток.

Тротуары следует устраивать с водонепроницаемым покрытием (асфальт, бетон) с уклоном от стен здания 0,01-0,03, при водонепроницаемых грунтах подготовку под тротуары выполняют по слою жирной глины.

Техническая эксплуатация фундаментов и оснований предусматривает меры по содержанию придомовых территорий. Территория двора для предохранения фундаментов от увлажнения должна иметь уклон от здания не менее 0,01 по направлению к водоотводным лоткам или приемным колодцам ливневой канализации, водосточные трубы должны содержаться в постоянной исправности.

Фундаменты и стены подвалов, находящиеся рядом с неисправными трубопроводами системы водоснабжения, канализации, теплоснабжения, в местах их пересечения со строительными конструкциями, должны быть защищены от увлажнения.

Проводить земляные работы вблизи здания разрешается только при наличии проектов, предусматривающих защиту оснований и фундаментов от увлажнения и деформаций, вызванных изменением или перераспределением нагрузок.

При появлении в стенах трещин из-за осадки грунта основания необходимо поставить маяки и наблюдать за ними 15-20 дней.

Если на протяжении срока наблюдения на маяке не появится трещина, значит, образование их и неравномерная осадка прекратились. Разрушение маяков означает продолжение осадки грунта, поэтому необходимо провести более тщательное изучение деформации и трещину заделать только после устранения причин, вызвавших ее.

Источниками увлажнения подвала может служить влага, поступающая через приямки. Стены приямков должны возвышаться над тротуаром на 10-15 см, поверхности стен и пола приямков должны быть без трещин, пол приямков иметь уклон от здания с устройством для отвода воды из приямка. Трещины и щели в местах примыкания элементов приямков к стенам подвала заливают битумом или заделывают асфальтом.

При наличии неорганизованного водоотвода нужно защищать приямки от попадания атмосферных осадков устройством навесов.

Подвалы и технические подполья должны иметь температурновлажностный режим согласно установленным требованиям.

В неотапливаемых подвалах и технических подпольях должен соблюдаться температурно-влажностный режим, при котором поддерживаются температура воздуха не ниже 5 °С и относительная влажность не более 60%. В отапливаемых подвалах температурно-влажностный режим, препятствующий выпадению конденсата на поверхности ограждающих конструкций, устанавливается в зависимости от характера использования помещения. Помещения подвалов и подпольев необходимо регулярно проветривать с помощью вытяжных каналов вентиляционных отверстий в окнах, цоколе или других устройств при обеспечении не менее чем однократного воздухообмена.

При выпадении на поверхности конструкции конденсата или появлении плесени необходимо устранить источники увлажнения воздуха и обеспечить интенсивное проветривание подвала или технического подполья через окна и двери, устанавливая в них дверные полотна и оконные переплеты с решетками и жалюзи.

В подвалах и подпольях с глухими стенами при необходимости следует пробить в цоколе не менее двух вентиляционных отверстий в каждой секции здания, расположив их в противоположных стенах и оборудовав жалюзийными решетками и вытяжными вентиляторами.

В зданиях с теплыми полами на первом этаже продухи в цоколе держат открытыми. В зданиях с холодными полами с наступлением холодов продухи закрывают.

Площадь продухов должна составлять примерно 1 / т площади подвала или технического подполья.

С целью предохранения конструкций от появления конденсата и плесени необходимо организовывать регулярное сквозное проветривание, открывая все продухи, люки, двери. Проветривание подполья следует проводить в сухие и неморозные дни.

Не допускается устраивать в подвальных помещениях склады горючих и взрывоопасных материалов, размещать другие хозяйственные склады, если вход в эти помещения осуществляется из общих лестничных клеток. На все проемы, каналы, отверстия технического подполья должны устанавливаться защитные сетки от грызунов.

Входные двери в техническое подполье, подвал должны быть закрыты на замок (ключи хранятся в организациях по содержанию жилищного фонда, ОДС, у дворника, рабочих, проживающих в этих домах), о месте хранения делается специальная надпись на двери.

Если через арендуемые помещения проходят транзитные инженерные коммуникации, арендатор обязан обеспечить доступ к ним представителям соответствующих организаций по обслуживанию жилишного фонда и городского коммунального хозяйства в любое время суток.

Организация по обслуживанию жилищного фонда должна регулярно (по рекомендациям санитарных органов) проводить дератизацию и дезинфекцию по уничтожению грызунов и насекомых в местах общего пользования, подвалах, технических подпольях.

При наступлении оттепелей необходимо регулярно убирать снег от стен здания на всю ширину отмостки или тротуара, принимать меры к ускорению таяния снега путем рыхления, разбрасывания и скалывания льда, водосточные лотки и приемные люки для стока воды периодически очищать. Опасность для оснований представляют растения, поэтому их сажают не ближе 5 м от стен здания.

Фундаменты и стены подвалов увлажняются из-за повреждения в трубопроводных системах; в случае обнаружения протечек затопления подвалов необходимо установить причины и принять соответствующие меры: установить и отключить поврежденный участок трубопровода, устранить неисправности трубопровода, отмостки, дренажной системы, исправить поврежденную гидроизоляцию.

Для предупреждения преждевременного износа отдельных частей здания и инженерного оборудования, устранения мелких повреждений и неисправностей предусматривается текущий ремонт.

Продолжительность эффективной эксплуатации здания до проведения очередного текущего ремонта фундаментов в зависимости от конструкций составляет от 15 до 60 лет.

При текущем ремонте фундаментов и стен подвальных помещений необходимо выполнить следующие основные работы:

  • заделка и расшивка стыков, швов, трещин, восстановление местами облицовки фундаментных стен со стороны подвальных помещений, цоколей;
  • устранение местных деформаций путем перекладки и усиления стен;
  • восстановление отдельных гидроизоляционных участков стен подвальных помещений;
  • пробивка (заделка) отверстий, гнезд, борозд;
  • усиление (устройство) фундаментов под оборудование (вентиляционное, насосное);
  • смена отдельных участков ленточных, столбчатых фундаментов или стульев под деревянными зданиями, зданиями со стенами из прочих материалов;
  • устройство (заделка) вентиляционных продухов, патрубков, ремонт приямков, входов в подвал;
  • замена отдельных участков отмосток по периметру зданий;
  • герметизация вводов в подвальное помещение и техническое подполье;
  • установка маяков на стенах для наблюдения за деформациями.

При капитальном ремонте фундаментов и подвальных помещений

выполняют следующие работы:

  • усиление оснований под фундаменты каменных зданий, не связанное с надстройкой здания;
  • частичная замена или усиление фундаментов под наружными и внутренними стенами, не связанные с надстройкой здания;
  • усиление фундаментов под инженерное оборудование, ремонт кирпичной облицовки фундаментных стен со стороны подвалов в отдельных местах;
  • перекладка кирпичных цоколей;
  • частичная или полная перекладка приямков у окон подвальных и цокольных этажей;
  • устройство или ремонт гидроизоляции фундаментов в подвальных помещениях;
  • восстановление или устройство новой отмостки вокруг здания;
  • восстановление или устройство новой дренажной системы.

Прочность и устойчивость здания в значительной степени, зависят от несущей способности основания и фундамента.

Толщина грунта, расположенного под фундаментом и воспринимающая через него нагрузку от здания, называется основанием. Грунты оснований под действием нагрузки от здания, сооружения деформируются; если при этом не происходит коренного изменения структуры грунта, то такая деформация называется осадкой. В отличие от осадки, просадкой называют деформации основания, связанные с коренными изменениями: выпиранием грунта из-под подошвы фундамента, оседанием отдельных пластов и т. п. Равномерная и незначительная осадка не нарушает прочности и устойчивости зданий. Неравномерная осадка и просадка грунтов оснований могут привести к значительным деформациям здания. Грунты, используемые в качестве оснований, подразделяются на скальные, крупнообломочные, песчаные и глинистые.

Скальные и крупнообломочные грунты, практически не сжимаемые под нагрузкой, не подвержены размыванию и являются надежным основанием. Несущая способность песчаных оснований зависит от крупности песка и его влажности.

Глинистые грунты в сухом состоянии являются хорошим основанием, но при увлажнении они теряют свои свойства: в пластичном и разжиженном состоянии несущая способность глин значительно снижается. Глинистые грунты, обладающие в естественном состоянии видимыми невооруженным глазом порами, размеры которых значительно превосходят размеры частиц, составляющих скелет грунта, при увлажнении теряют свою связность. В таких грунтах образуются просадки, поэтому необходимо принимать меры для предохранения таких оснований от увлажнения.

Необходимо учитывать, что даже весьма значительные осадки, если они равномерны по периметру здания, безболезненно воспринимаются зданиями и сооружениями. Известны случаи, когда равномерные осадки измеряемые десятками сантиметров, не вызывали серьезных деформаций и не препятствовали нормальной эксплуатации зданий. Как уже отмечалось, более опасными являются неравномерные осадки. По чувствительности к неравномерным осадкам здания и сооружения подразделяются на малочувствительные и чувствительные.

Малочувствительными являются сооружения, которые проседают как одно пространственное целое равномерно или с креном, а также здания, элементы которых шарнирно связаны между собой.

Чувствительными к неравномерным осадкам называют конструкции, состоящие из жестко связанных между собой элементов, взаимное смещение которых может вызвать в несущих конструкциях здания значительные деформации или местные повреждения. К таким конструкциям относятся крупнопанельные здания с несущими поперечными стенами, рамы с жесткими узлами и др.

Предельные разности осадок оснований фундаментов колонн или стен гражданских зданий не должны превышать (L - расстояние между точками, по которым проверяют разность просадок оснований).

В зависимости от характера развития неравномерных осадок основания и жесткости сооружения различают пять форм деформаций: крен, прогиб, выгиб (перегиб), перекос, кручение.

Рис. 21.1.

Рис. 21.2. Относительный прогиб или выгиб сооружения

Рис. 21.3. Крен сооружения

Рис. 21.4. Перекос сооружения



Рис. 21.5.

Крен - поворот относительно горизонтальной оси (рис. 21.3). Наибольшую опасность крен представляет для узких зданий повышенной этажности.

Прогиб и выгиб (рис. 21.1) связаны с искривлением сооружения.

Перекос возникает в конструкциях, когда резкая неравномерность осадок развивается на коротком участке здания (рис. 21.4).

Кручение сооружения наблюдается при неодинаковом крене по длине сооружения, при котором в двух сечениях здания он развивается в разные стороны (рис. 21.5).

Предельное значение крена, установленное нормами, не должно превышать 0,004 высоты здания. Прогибы зданий ограничиваются предельными значениями, не превышающими для крупнопанельных зданий - , а для кирпичных и крупноблочных - (L - длина изгибаемого участка). В общем случае осадка каждого фундамента может рассматриваться как сумма четырех слагаемых осадок, каждое из которых может принимать различные значения, в том числе может быть равно нулю:

где - осадка в результате уменьшения пористости грунтов под воздействием нагрузки от фундамента или уплотнение, вызванные работой соседних зданий и сооружений;

Осадка фундамента в связи с разуплотнением верхних слоев грунта;

Осадка вследствие выдавливания грунта из-под подошвы фундамента;

Осадка при нарушении структуры грунта.

Разнообразие причин развития неравномерных осадок уплотнения (различные инженерно-геологические условия, неравномерная загрузка частей сооружения или изменение нагрузок, сооружение зданий в непосредственной близости от существующих и др.) требует внимательного изучения состояния здания в период эксплуатации, а также строгого выполнения проектных условий работы оснований.

Осадки разуплотнения развиваются под действием веса сооружения, когда он меньше массы вынутого грунта.

Осадки выпирания связаны с развитием пластических деформаций грунта основания. Причины развития неравномерных выпираний те же, что и при развитии неравномерных осадок уплотнения. От воздействия различных факторов могут развиваться осадки, вызванные изменением структуры грунтов.

Структура грунтов может нарушиться вследствие метеорологических воздействий, воздействий грунтовых вод и газа, динамических воздействий. К метеорологическим воздействиям относятся промерзание и оттаивание, набухание и размягчение, высыхание грунтов. Очевидно, что все перечисленные факторы могут происходить при нарушении проектных условий во время эксплуатации.

При нарушении структуры основания и потере в связи с этим несущей способности применяют различные методы искусственного его укрепления.

Уплотнение основания песчаными и грунтовыми сваями. Для этого в грунте делают скважины либо при помощи стальной трубы (сердечника) с башмаком большего диаметра для облегчения извлечения трубы, либо путем пробивки скважины-шпура буровой штангой диаметром 42...48 мм с наконечником диаметром 60...80 мм. Уплотнение грунта производится силой взрыва взрывчатых веществ, закладываемых в образованные бурением скважины. Скважины заполняют уплотненным грунтом или песком. Объемная масса скелета грунта достигает значения, при котором основание становится непросадочным (1,55...1,65 т/м 3).

Силикатизация грунтов применяется для закрепления сухих и водонасыщенных песков, просадочных макропористых и насыпных грунтов. Сущность метода заключается в том, что в пески и лессы нагнетают водный раствор силиката натрия, который цементирует грунт и значительно повышает его прочность. Сухие и водонасыщенные пески с коэффициентами фильтрации от 2 до 80 м/сут закрепляют путем введения поочередно жидкого стекла (силиката натрия) Na 2 O-n SiO 2 и хлористого кальция CaCl 2 , который является катализатором. Растворы взаимодействуют следующим образом:

Na 2 O-n SiO 2 +СаСl 2 + m Н 2 О = n SiO 2 (m - 1) Н 2 О + Ca(OH) 2 + 2NaCl.

При этом образуется нерастворимый в воде гель кремниевой кислоты, который цементирует частицы песка. Грунты, пропитанные нефтепродуктами, смолами при наличии грунтовых вод, имеющих р>9, силикатизации не поддаются.

Пески с коэффициентом фильтрации от 0,5 до 5 м/сут (плывуны) закрепляют одним раствором, состоящим из жидкого стекла и фосфорной кислоты Н 3 РО 4 или из серной кислоты и сернокислого алюминия (в качестве более дешевого заменителя). Для закрепления лессов и лессовидных суглинков, макропористых просадочных грунтов выше уровня грунтовых вод с коэффициентом фильтрации 0,1...2 м/сут применяют однорастворный метод силикатизации жидким стеклом плотности 1,13 г/см 3 , которое, соединяясь с сернокислым калием, содержащимся в лессах и лессовидных суглинках (вместо хлористого кальция), образует нерастворимый гель и цементирует частицы грунта.

Силикатизация производится следующим образом: в грунт на глубину до 15 м погружают перфорированные трубы диаметром 19...38 мм, по которым нагнетают растворы под давлением 15-105 Па. При двухрастворном способе силикатизации инъекторы (перфорированные трубы) погружают попарно на расстоянии 15...20 см один от другого. Оба раствора можно нагнетать по одной трубе поочередно.

Закрепленные жидким стеклом мелкие пески с коэффициентом фильтрации 2...80 м/сут обладают прочностью 1,5...3,5 МПа, прочность плывунов, лессовых и просадочных суглинков доходит до 1 МПа, при этом просадочные свойства исчезают.

Иногда для закрепления грунтов применяют электроосмос - явление передвижения воды под действием электрического тока. При таком движении вода захватывает с собой частицы грунта. Если процесс электроосмоса протекает длительное время и при этом вода, собирающаяся у катодов, откачивается, то грунт будет обезвоживаться и уплотняться.

В глинистых грунтах повышение эффекта откачки воды создается путем сочетания работы иглофильтров с электроосушением.

Метод электроосмоса может применяться также в сочетании с химическим методом. Длительная работа электродов под действием постоянного тока приводит к их разрушению, при этом продукты разрушения электродов, соединяясь с частицами глинистого грунта, увеличивают его прочность. Иногда через трубу (анод) в грунт подают водные растворы солей многовалентных металлов, которые, соединяясь с глинистым грунтом, коагулируют глинистые частицы, цементируют их между собой гелями солей железа и алюминия.

Способ цементации грунтов заключается в нагнетании в грунт под давлением 0,3... 0,6 МПа цементного раствора, который, затвердевая в порах грунта, связывает между собой его частицы, увеличивает прочность грунта и уменьшает фильтрацию воды. Цементацию можно применять для грунтов с крупными порами, так как частицы цемента могут проникать в щели размером не менее 0,1 мм. К таким грунтам относятся песчаногравийные, галечниковые и гравийные отложения, а также крупнообломочные грунты сухие и в водонасыщенном состоянии с коэффициентами фильтрации 80...200 м/сут.

Для увеличения водонепроницаемости и уменьшения фильтрации применяют также битумизацию грунтов. Разогретый битум нагнетают через инъекторы в поры грунта под давлением до 25-105 Па.

Для получения особо высоких прочностных показателей песчаных грунтов (1...3 МПа) используют карбамидные смолы. Закрепление песчаных грунтов карбамидными смолами производится так же, как закрепление грунтов методом силикатизации. Однако следует иметь в виду, что закрепление грунтов смолами очень дорогой способ и его можно применять в исключительных случаях.

Имеются и другие способы укрепления грунтов, но все они связаны с дополнительными затратами. Поэтому при технической эксплуатации зданий необходимо принимать меры, исключающие увлажнение грунтов или расстройство их структуры по другим причинам (авария инженерных коммуникаций, неграмотная организация земляных работ при возведении зданий рядом с существующими, нарушение правил эксплуатации зданий, вызывающее структурное расстройство грунтов, и т. д.).

Фундаменты относятся к основным конструктивным элементам сооружений, воспринимающих нагрузку от надземных частей и передающих ее основанию. Для прочности и устойчивости здания необходимо, чтобы фундаменты удовлетворяли следующим требованиям:

  • - площадь подошвы фундамента принималась из расчета допустимого напряжения на грунт основания, при этом нагрузка на единицу площади поверхности основания была бы одинаковой для однородных грунтов;
  • - фундаменты обладали требуемой жесткостью и массивностью;
  • - конструкция фундаментов передавала вертикальные нагрузки основанию;
  • - глубина заложения фундаментов исключала промерзание грунтов ниже отметки их заложения, не прокладывались какие-либо инженерные коммуникации ниже заложения фундаментов;
  • - фундаменты устраивают из бетона, железобетона, бутобетона, кирпичной или бутовой кладки. Материал фундаментов выбирают в зависимости от группы капитальности здания, его назначения, а также с учетом географических, геологических и гидрогеологических условий.

По способу возведения фундаменты подразделяются на монолитные и сборные. При заложении ниже 1,5 м фундаменты можно выполнять одиночными с рандбалками, несущими нагрузку от вышележащих стен.

Ленточные фундаменты равномерно распределяют одинаковую нагрузку на однородные основания. При различных нагрузках в здании делают местные уширения фундаментов, а также выполняют осадочные швы на расстоянии около 70 м друг от друга, в просадочных грунтах эти расстояния уменьшаются. Ленточные фундаменты при незначительных нагрузках можно устраивать под столбы и колонны.

В конструкциях крупнопанельных жилых домов в связи с большой жесткостью при неравномерных деформациях основания возникают значительные дополнительные усилия. Поэтому фундаменты этих зданий должны исключать значительные или неравномерные осадки. Предельные допустимые деформации оснований для этих зданий примерно в 1,5 раза меньше, чем для кирпичных.

При эксплуатации зданий необходимо иметь в виду, что наличие подвалов в здании определяет глубину заложения фундаментов той части здания, где эти подвалы находятся.

При приемке зданий надо обращать внимание на качество гидроизоляции фундаментов и подвальных частей здания.

Ремонт и усиление фундаментов сопровождается, как правило, земляными работами по вскрытию фундаментов. При этом должны приниматься меры по предотвращению переувлажнения грунтов и нарушения их структуры. Отрываемые траншеи должны иметь глубину, не достигающую подошвы фундамента на 50 см. Затем (в соответствии с проектом) углубляют траншею отдельными колодцами, расположенными на расстоянии 2... 2,5 м друг от друга и имеющими по длине вдоль фундамента 1,5 м, после чего усиляют фундамент. После окончания работ на усиляемом участке тщательно послойно засыпают место работ песком и плотно утрамбовывают.

Прочность фундаментов можно восстановить методом цементации, для чего в поры фундаментов нагнетают цементный раствор. Работы должны производиться по проекту с определением числа просверливаемых отверстий в фундаменте для инъекторов, нагнетаемого раствора и других параметров.

Основной причиной физического износа и снижения несущей способности фундаментов (как и оснований) является воздействие на них грунтовых и поверхностных вод. Поэтому важное значение в технической эксплуатации здания имеют отвод поверхностных вод и понижение уровня грунтовых вод.

При увлажнении материала фундаментов влага по капиллярам будет подниматься вверх. При этом влажность в разных сечениях будет различной, так как высота подъема влаги будет зависеть от размеров сечения капилляров: чем меньше сечение, тем больше высота подъема влаги.

Попеременное увлажнение и высыхание материала, как при положительных, так и при отрицательных температурах, вызывает дополнительные напряжения, которые в ряде случаев могут оказаться разрушающими. Наибольших значений эти напряжения достигают в поверхностных слоях материала, что приводит к постепенному разрушению этих слоев. Попеременное увлажнение и высыхание может быть также причиной частичной потери прочности материала. Трещины, являющиеся результатом снижения прочности материала, во многих случаях увеличивают влаго- и воздухопроницаемость материала, что еще больше ускоряет процесс разрушения.

Источником увлажнения может быть грунтовая влага или метеорологическая влага. Грунтовую влагу могут создавать все источники грунтовых вод. Грунтовая влага, проникая в материал фундаментов, может подниматься вверх по стене на высоту более 2,5 м от уровня земли. Наиболее энергично всасывают грунтовую влагу фундаменты и стены подвалов, сложенные на известковом растворе из различных мелкозернистых материалов - кирпича, песчаника и т. п.

В грунтовых водах могут также содержаться органическая, азотная и другие кислоты, которые, соединяясь с основными окислами в каменных породах материала фундамента, образуют растворимые соли. Степень агрессивности этих соединений зависит от растворимости их в воде: чем больше растворимость соли в воде, тем разрушительнее соль действует на материал фундамента.

Источником метеорологической влаги являются атмосферные осадки. При сильном ливне за 1 мин по фасадной поверхности стены шириной 1 м и высотой в один этаж стекает до 12 л воды. При неисправной или неправильно выполненной отмостке эта влага проникает в тело фундамента. Кроме того, проникновению атмосферной влаги может способствовать неисправность водоотводящих устройств.

Первой мерой защиты фундаментов и оснований от увлажнения является наличие вокруг здания технически исправных отмосток и лотков. Отмостки должны иметь ширину не менее 0,7 м с уклоном 0,02...0,05. Тротуары должны быть покрыты асфальтом или бетоном. При водопроницаемых грунтах подготовка под тротуары выполняется по слою жирной глины.

При расположении грунтовых вод выше отметки пола подвала для понижения этого уровня устраивают дренажи. Дренажная система состоит из закрытых каналов, проложенных ниже необходимой отметки понижения грунтовых вод на 0,3...0,5 м. Каналы прокладывают с продольным уклоном 0,001...0,01 к сборному каналу, который отводит всю воду в водостоки. Сечение каналов, конструкция дренажей и глубина их заложения определяются проектом.

Горизонтальная противокапиллярная гидроизоляция должна пересекать стену и внутреннюю штукатурку на одном уровне с подготовкой под пол первого этажа, но не менее чем на 15 см выше отмостки. Если подготовка под пол по обе стороны стены находится на разных уровнях, то гидроизоляцию устраивают на уровне пониженной подготовки.

Цоколи зданий с облицовками находятся в особо неблагоприятных условиях, поэтому кладка цоколя выполняется на цементном растворе не ниже марки 50, с внутренней стороны поверхность кладки изолируют битумом.

Наиболее тщательно должна выполняться гидроизоляция подвальных помещений панельных зданий. Наружную поверхность стеновой панели крупнопанельного здания с техническим подпольем, обсыпаемую грунтом, обмазывают два раза горячим битумом. Горизонтальную гидроизоляцию из двух слоев гидроизола укладывают между блоком фундамента и нижней гранью панели. Для изоляции от грунтовой влаги внутренней поверхности нижнего края панели по площади ее соприкосновения с грунтом пола горизонтальный слой загибается на внутреннюю поверхность панели. При выборе типа гидроизоляции следует учитывать возможность деформаций в фундаментах зданий, а также вес вышележащих стен. Применяемый иногда в качестве гидроизоляции слой цементного раствора не может служить надежной защитой вследствие его хрупкости.

При наличии подвалов всегда необходимо устраивать горизонтальную и вертикальную гидроизоляцию. Здания, возведенные на глинистых грунтах, должны иметь гидроизоляцию с устройством замков в местах сопряжения изоляции пола с изоляцией стен.

При наличии грунтовых вод выше уровня пола подвала и расчетном напоре до 0,8 м поверх гидроизоляции пола следует укладывать дополнительную нагрузку в виде слоя тощего бетона с наибольшей объемной массой.

Давление воды с расчетным напором 0,8 м и более воспринимается специально устраиваемой железобетонной плитой.

При сильноагрессивных водах, разрушающих даже специальные цементы, необходимо применять сплошную гидроизоляцию в виде оболочки из битумных материалов.

Техническая эксплуатация фундаментов и оснований предусматривает правильное содержание придомовых территорий. При этом территория двора должна иметь уклон от здания не менее 0,01 по направлению к водоотводным лоткам или водоприемникам ливневой канализации. Отмостки и тротуары вокруг зданий должны быть в исправном состоянии. Иногда происходит осадка засыпного грунта и между отмосткой и кладкой фундамента, образуются щели. Такие щели следует заливать битумом или асфальтом. Фундаменты и стены подвалов, находящиеся рядом с неисправными трубопроводами водопровода, канализации и теплофикации в местах их пересечения со строительными конструкциями, должны быть защищены от увлажнения.

Производить земляные работы вблизи существующих зданий разрешается только при наличии проектов, предусматривающих защиту оснований и фундаментов от увлажнения, а также от деформаций, вызванных изменением или перераспределением нагрузок.

При появлении в стенах трещин из-за осадки грунта надо поставить маяки и вызвать специализированную службу для инженерных исследований причин деформаций.

Необходимо следить за исправным состоянием приямков, стенки которых должны быть на один-два ряда кирпичной кладки выше уровня тротуара или отмостки. Образовавшиеся щели в местах примыкания элементов приямков к стенам подвала заделывают битумом или асфальтом. Имеющуюся вокруг здания дренажную систему регулярно промывают водой. Восстановление фильтрующей способности дренажа обеспечивается проведением планово-предупредительных текущих и капитальных ремонтов.

В подвальных помещениях необходимо поддерживать заданный температурно-влажностный режим. Продухи в цокольной части подвальных стен на весенне-летний период следует открывать полностью для проветривания помещений. Особо тщательно рекомендуется осматривать состояние инженерных систем и коммуникаций, расположенных в подвалах, и принимать меры по своевременному устранению дефектов, чтобы предупредить перерастание их в отказы.

Необходимо ежегодно проверять состояние территорий домовладений, проектные уклоны и застои воды. Все выявленные недостатки устраняются в ходе подготовки к весенне-летней эксплуатации зданий.

Ремонт дренажных систем, а также усиление и переустройство фундаментов, водопонижение или строительство осушающих галерей необходимо производить силами специализированных строительных или ремонтно-строительных организаций по утвержденным проектам.

За последние 15...20 лет в результате многочисленных экспериментальных исследований с применением рассмотренных выше схем испытаний получены обширные данные о поведении грунтов при сложном напряженном состоянии. Поскольку в настоящее время в…

  • Упругопластическое деформирование среды и поверхности нагружения

    Деформации упругопластических материалов, в том числе и грунтов, состоят из упругих (обратимых) и остаточных (пластических). Для составления наиболее общих представлений о поведении грунтов при произвольном нагружении необходимо изучить отдельно закономерности…

  • Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний

    При исследовании грунтов, как и конструкционных материалов, в теории пластичности принято различать нагружение и разгрузку. Нагружением называют процесс, при котором происходит нарастание пластических (остаточных) деформаций, а процесс, сопровождающийся изменением (уменьшением)…

    • Инварианты напряженного и деформированного состояний грунтовой среды

      Применение инвариантов напряженного и деформированного состояний в механике грунтов началось с появления и развития исследований грунтов в приборах, позволяющих осуществлять двух- и трехосное деформирование образцов в условиях сложного напряженного состояния…

    • О коэффициентах устойчивости и сопоставление с результатами опытов

      Так как во всех рассмотренных в этой главе задачах грунт считается находящимся в предельном напряженном состоянии, то все результаты расчетов соответствуют случаю, когда коэффициент запаса устойчивости к3 = 1. Для…

    • Давление грунта на сооружения

      Особенно эффективны методы теории предельного равновесия в задачах определения давления грунта на сооружения, в частности подпорные стенки. При этом обычно принимается заданной нагрузка на поверхности грунта, например, нормальное давление р(х), и…

      Решений плоской и тем более пространственных задач консолидации в виде простейших зависимостей, таблиц или графиков очень ограниченное число. Имеются решения для случая приложения к поверхности двухфазного грунта сосредоточенной силы (В…

    3 8 ..

    Лекция 8

    Технология ремонта фундаментов зданий и сооружений

    1. Организационные мероприятия при усилении фундаментов.

    Прежде чем приступить к выполнению работ по ремонту и усилению фундаментов, необходимо установить причину повреждения фундаментов и устранить ее.

    Для выявления причин, вызвавших повреждения фундаментов, а также при их реконструкции проводят сбор сведений по истории здания или сооружения, а также выполняют техническое обследование надземной и подземной частей здания и прилегающей территории. Это особенно актуально для зданий старой постройки. Сбор сведений по истории здания дает возможность установить дату постройки; первоначальный вид; изменения, которые происходили в процессе эксплуатации (надстройки, пристройки, перепланировка); аварийные состояния.

    При наличии деформаций и трещин в стенах шурфы обязательно выполняют в местах предполагаемых повреждений фундамента. Их отрывают на 0,5 м ниже уровня подошвы фундамента. В плане шурф имеет форму прямоугольника, причем большая его сторона длиной 1,5...3 м примыкает к фундаменту. Прочность фундаментов и стен подвала определяют известными неразрушающими методами, например, акустическим, радиометрическим, механическим и т.п.

    Осадку здания контролируют инструментально, а раскрытие трещин - с помощью маяков, устанавливаемых поперек трещин на стене здания (рис. 1). Маяки устраивают в виде мостика длиной 250...300, шириной 50...70 и толщиной 15...20 мм. Место, где устраивают маяк, очищают от штукатурки, краски, облицовки. На каждой трещине устанавливается два маяка: один - в месте наибольшего раскрытия, другой - в ее начале. Если в течение 15...20 дней на маяках не появились трещины, то можно считать, что деформации здания стабилизировались. Маяки делают из гипса, можно из металла или стекла.

    2. Характерные виды деформаций фундаментов.

    Изучение основных видов повреждений фундаментов позволило выполнить их систематизацию по характеру развития трещин в фундаментах и стенах здания:

    1.Осадка средней части здания. Основные причины: слабое основание в средней части здания; просадка просадочных грунтов основания; карстовые пустоты в средней части здания

    2. Осадка крайней части здания (левой или правой). Основные причины: слабое основание под крайней частью здания; просадка грунтов от замачивания; карстовые пустоты;отрывка котлована или траншеи рядом со зданием; сдвиг рядом расположенной подпорной стенки; затопление подвала

    3. Осадка обеих крайних частей здания. Основные причины: аналогичные причины, указанные в предыдущем пункте, но действующие в обеих частях здания; размещение под средней частью крупного включения (валуна, старого фундамента и т.п.)

    4. Выпучивание и искривление стен в вертикальной и горизонтальной плоскостях. Основные причины: распор стропильной системы;горизонтальные усилия от растяжек, прикрепленных к зданию; эксцентричная передача нагрузки от перекрытий; динамические нагрузки от оборудования, расположенного в здании; сейсмические подвижки

    3. Подготовительные работы при усилении фундаментов

    До начала работ по ремонту и усилению фундаментов должны быть исключены причины, вызывающие его неравномерную осадку или разрушение. Если деформации фундамента вызвали соответствующие деформации стен и перекрытий, то работы выполняют в следующей последовательности: укрепление (вывешивание) перекрытий; укрепление стен в местах деформаций; ремонт и усиление фундаментов; ремонт стен; ремонт перекрытий.

    К основным работам по ремонту и усилению фундаментов относятся: усиление оснований и фундаментов; уширение подошвы фундаментов; увеличение глубины заложения; полная или частичная их замена.

    Разгрузка фундаментов.

    Перед началом работ необходимо принять меры по обеспечению устойчивости здания и предохранению конструкций от возможных деформаций, т.е. выполнить частичную или полную разгрузку фундаментов.

    Частичную разгрузку выполняют путем установки временных деревянных опор, а также деревянных и металлических подкосов.

    Для установки временных деревянных опор (рис. 2) в подвале или на первом этаже на расстоянии 1,5...2 м от стены укладывают опорные подушки, на них размещают опорный брус, на который устанавливают деревянные стойки. По верху стоек укладывают верхний прогон, который крепится к стойкам с помощью скоб. Затем между стойками и нижним опорным брусом забивают клинья, включая тем самым стойки в работу, и нагрузка от перекрытия частично снимается со стен и передается на временные опоры. Опоры на этажах должны устанавливаться строго одна над другой. Для увеличения устойчивости конструкции стойки раскрепляют раскосами.

    Полную разгрузку фундаментов осуществляют с помощью металлических балок (рандбалок), заделываемых в кладку стены, а также поперечных металлических или железобетонных балок. Рандбалки (рис. 3, а) устанавливают выше обреза фундамента в заранее пробитые с обеих сторон стены штрабы на постель из цементно-песчаного раствора. Штрабы необходимо пробивать под тычковым рядом кирпичной кладки. Временное закрепление рандбалки в штрабе выполняют клиньями. В поперечном направлении через 1,5...2 м балки стягивают болтами диаметром 20...25 мм. Пространство между временно закрепленной балкой и стеной заполняют цементно-песчаным раствором состава 1:3. Стыки рандбалок по фронту соединяют накладками на электросварке. В этом случае нагрузка передается на соседние участки фундамента.

    mob_info