Постановка Задач линейного программирования и их решение с помощью msexcel. Гурвиц Л., Маскин Э., Майерсон Р. о теории оптимальных механизмов распределения ресурсов Особенности жизни, деятельности, вклада в науку, экономико-математических теорий Л.В. Кант

Леонид Витальевич Канторович родился в 1912 пив возрасте 14лет поступил в Ленинградский государственный университет (ЛГУ), который окончил в 1930 г. Затем учился в аспирантуре. В 1934 г. он стал профессором ЛГУ, а спустя год —доктором наук. В годы войны преподавал в Военно-морской инженерской академии, после войны возглавлял отдел в Институте математики и механики ЛГУ, а с 1958 г. — кафедру вычислительной математики. Одновременно ученый возглавлял отдел приближенных вычислений Математического института им. Стеклова Ленинградского отделения АН СССР.
Первые научные результаты были получены Л.В. Канторовичем в дескриптивной теории функций и множеств, в частности в теории проективных множеств. В 1939 г. ученый опубликовал работу «Математические методы организации и планирования производства». В ней он описал основные типы экономических задач, поддающиеся открытому им математическому методу, положив тем самым начало линейному программированию.
В 1949 г. Л.В. Канторович стал лауреатом Государственной премии СССР «За работы по функциональному анализу», в 1958 г. — был избран членом-корреспондентом АН СССР (экономика и статистика), а в 1964 г. — академиком АН СССР Он являлся одним из основателей Сибирского отделения АН СССР. В 1960 г. переехал в Новосибирск, где руководил Лабораторией по применению математических и статистических методов в экономических исследованиях и планировании, а также преподавал в Новосибирском университете. В 1965 г. ученый удостаивается Ленинской премии, затем становится почетным доктором многих университетов мира.
Свой путь в науке Канторович начинал как математик, но известность в науке он получил именно как математик-экономист, когда сформулировал и предложил решение задач, получивших название «задачи линейного программирования». В 1959 г. была опубликована работа, которую ученый считал главной: «Экономический расчет наилучшего использования ресурсов».
Но не все его предложения находили понимание у высших представителей власти. Поэтому в Академии наук СССР была создана специальная лаборатория по применению математики в экономике во главе с академиком B.C. Немчиновым. В 1965 г. Л.В. Канторович вместе с В.В. Новожиловым и B.C. Немчиновым стал лауреатом Ленинской премии за развитие математико-экономического направления. После этого нападки на Канторовича резко сократились, хотя не желавшие использовать оптимизационные методы руководители разного уровня остались. Здесь сказался еще непознанный тогда закон поведения экономических систем, обоснованный профессором К.А. Смирновым в 80-х гг.
В плановой экономике утвержденный план работы любой экономической системы (ЭС) становился законом. А оптимальный план, уже по самому его определению, был напряженным, в нем отсутствовали скрытые резервы, которые руководителям экономических систем все же удавалось находить.
В 1975 г. за разработку задачи линейного программирования и метода ее решения Л.В. Канторович был награжден Нобелевской премией с формулировкой «За разработку методов эффективного использования ресурсов».
В целом вклад ученого в науку можно коротко охарактеризовать следующим образом:
1) он впервые обратил внимание на то, что разнообразные проблемы можно сформировать как задачи оптимизации и предложил общий подход к их решению. Это задачи по загрузке оборудования, по раскрою материалов, распределению культур по площадям, транспортная задача;
2) создал теорию оптимального народно-хозяйственного планирования — по сути дела предложил модель рыночного социализма. Ввел новые показатели — разрешающие множители, объективно обусловленные оценки, двойственные оценки — эти показатели дают возможность отбирать проекты для составления оптимального плана, согласовывать народно-хозяйственные интересы с интересами отдельных экономических систем (хозяйственных единиц);
3) разработал систему оптимального планирования, которая вступила в противоречие с господствовавшей тогда трудовой теорией стоимости. Представители этой теории не признавали вводимые Канторовичем ограничения не только на объем труда, но и на объемы других невоспроизводимых ресурсов (земля, полезные ископаемые). Кроме того, задача разработки оптимального плана требовала для решения вычислительные средства большой мощности. Рекомендации, вытекавшие из теории оптимального планирования, предполагали использование оценок оптимальных цен, которых не было в реальности, — действовали цены, не балансировавшие спрос и предложение. Существовала и проблема глобального критерия, который должен учитывать интересы разных групп населения и экономических систем (предприятий, отраслей).
Л.В. Канторовича можно считать основоположником науки об управлении и принятии управленческих решений, основная задача которой — применение естественно-научного метода к анализу задач организационного управления с тем, чтобы снабдить тех, кто управляет, оптимальными решениями.
Развивая идею оптимальности в экономике, он установил взаимозависимость оптимальных цен и оптимальных производственных и управленческих решений и пришел к выводу, что каждое оптимальное решение взаимосвязано с оптимальной системой цен. Работая над общей теорией приближенных методов, он предложил эффективные способы решения операторных уравнений (в том числе метод наискорейшего спуска и метод Ньютона для таких уравнений).
Работы Л.В. Канторовича (он автор более 110 научных трудов) посвящены оптимизации организации и планирования производства, линейному программированию, экономической кибернетике, экономическим показателям, ценообразованию. Среди трудов ученого особо выделяют: «Экономический расчет наилучшего использования ресурсов» (1959), «Динамическая модель оптимального планирования» (1964), «Математика и экономика — взаимопроникновение наук» (1977, совместное М.К. Гавуриным).
Неоспоримым вкладом в теорию и практику оптимального планирования стало открытие Канторовичем методов линейного программирования. Предложив новый математический аппарат для экономической науки, он впервые поставил задачу хозяйственного планирования как задачу оптимизации. Именно за решение этой и других задач в 1975 г. ему совместно с американским экономистом Т. Купмансом была присуждена Нобелевская премия по экономике.
Л.В. Канторович также выявил необходимость введения оценок для всех видов затрачиваемых производственных факторов при составлении производственных планов. В связи с этим он предложил классификацию производственных факторов, выделяя четыре группы:
1) пропорционально зависимые (определенное количество шин для автомобиля);
2) неизменно расходуемые (охрана, управленческие расходы и т.д.);
3) нелимитирующие (избыточные);
4) существенно переменные, т.е. факторы, имеющиеся в ограниченном количестве, расход которых на единицу продукции зависит от организации и технологии производства. Наиболее значительными факторами являются рабочая сила, природные ресурсы и производственные площади.
В предложенной ученым системе экономических расчетов дефицитные ресурсы получают высокую оценку, а имеющиеся в избытке — нулевую. Система экономических расчетов, использующая объективно обусловленные оценки, позволяет на основе определения дефицитности, лимитированности и задолженности производственных факторов найти такой вариант их использования, который бы обеспечил при данных ресурсах максимальное выполнение программного задания с учетом ассортимента.
Особенно важным является вопрос о наилучшем использовании оборудования. Здесь ученый ввел весьма ценное понятие «прокатной оценки» — ренты с оборудования. Он писал: «Мы употребляем термин "прокатная оценка", так как это есть оценка той платы, которая была бы оправдана, если бы такая машина бралась на некоторый срок напрокат (в аренду). Можно ее рассматривать также как ренту с оборудования, которую мы хотя и не оплачиваем, но исчисляем ее возможный размер». Таким образом, если не использовать в течение дня данную машину, значит, потерять определенную сумму денег и, следовательно, количество труда, которые соответствуют прокатной оценке, а ее использование, напротив, позволит сэкономить эту же сумму. Например, Л.В. Канторович рассчитал, что использование каждого машино-дня дает экономию в себестоимости в сумме 600 руб., т.е. использование каждой лишней машины позволяет сэкономить в день 600 руб., а не использование приводит к потере этих 600 руб. В данном случае 600 руб. — это и есть прокатная оценка.
С вопросом о рациональном использовании оборудования тесно связана и проблема рационального использования природных ресурсов. Последние всегда ограниченны, поэтому значительное внимание ученый уделял теории дифференциальной ренты. Величина ренты определяется, как он утверждал, той экономией труда, которую дает использование этих источников в оптимальном плане. Рентные оценки, по его мнению, позволяют измерить стоимость использования природных ресурсов, в частности земли, воды, воздуха и т.д. Эта идея намного опередила свое время. Однако в конце 1930-х гг. она пришла в противоречие с концепцией общенародной собственности на природные ресурсы, из которой вытекало, что к ним не применимы стоимостные показатели, так как они выделялись «даром». Двойственные оценки материальных ресурсов были расценены как попытка подменить трудовую основу стоимости понятием полезности или дефицитности. Сам же Л.В. Канторович рассматривал созданную им теорию как научную базу для всей системы народно-хозяйственных расчетов.
Проблеме динамического программирования ученый посвятил свою работу «Динамическая модель оптимального планирования» (1964). Он впервые построил оптимальные статичные и динамические модели текущего и перспективного планирования. К постановке и анализу динамических задач он пришел, анализируя недостатки статичной оптимизации. Многие задачи оптимизационного программирования расчленяются, как известно, на этапы (шаги), и для их решения весьма эффективным является метод динамического программирования, развитый впоследствии Р. Беллманом и его школой. Следует отметить, что использование динамических экономико-математических моделей стало практиковаться в нашей стране лишь с середины 1960-х гг.
Обобщая сказанное, отметим, что Л.В. Канторович — яркий представитель петербургской математической школы, созданной талантливейшим русским математиком П.Л. Чебышевым (1821 — 1894), умевшим элементарными средствами получать фундаментальные результаты, связывать проблемы математики с принципиальными вопросами естествознания и техники, впервые доказавшим в теории вероятностей действие закона больших чисел (в общей форме), а в теории чисел — асимптотический закон распределения простых чисел и др.

Лекция, реферат. Л. В. Канторович. Разработка эффективного использования ресурсов, решение задач оптимизации - понятие и виды. Классификация, сущность и особенности. 2018-2019.




Министерство образования и науки, молодежи и спорта Украины

Севастопольский национальный технический университет

Факультет Экономики и менеджмента

На тему: Л.В. Канторович: разработка теории линейного программирования

по дисциплине «История экономики и экономической мысли»

Выполнила: ст. гр. МО-21

Ковалева С.Н.

Проверил: преподаватель

Керезь Е.С.

Севастополь 2009

1.2 Вклад в науку

1.3 Научные работы

Заключение

Введение

В этом реферате я напишу о деятельности Леонида Витальевича Канторовича, выдающегося ученого ХХ века, о его борьбе за признание своих экономико-математических теорий, о начальном этапе истории линейного программирования, о зарождении новой области математической деятельности, связанной с экономическими приложениями, называемой у нас то исследованием операций, то математической экономикой, то экономической кибернетикой и т. п., о ее месте и связях с современным математическим ландшафтом.

1. Леонид Витальевич Канторович

1.1 Биография Л.В. Канторовича

Леонид Витальевич Канторович (1912--1986) родился в Санкт-Петербурге в семье врача. Его выдающиеся способности проявились рано -- в 14 лет он поступил в Ленинградский государственный университет. Закончив ЛГУ за 4 года, он поступил в аспирантуру. В 1932 г. он становится доцентом, а в 1935 г. -- профессором ЛГУ. В 1935 г. ему присвоено звание доктора физико-математических наук без защиты диссертации. В 1958 г. он избран членом-корреспондентом АН СССР по экономике, а в 1964 г. -- академиком. За разработку метода линейного программирования и экономических моделей удостоен в 1965 году вместе с академиком В. С. Немчиновым и профессором В. В. Новожиловым Ленинской премии. С 1971 года работал в Москве, в институте управления народным хозяйством Государственного комитета Совета Министров СССР по науке и технике. 1975 год -Нобелевская премия по экономике (совместно с Т. Купмансом «за вклад в теорию оптимального распределения ресурсов»). С 1976 работал во ВНИИСИ ГКНТ и АН СССР, ныне Институт системного анализа РАН.

Награждён 2 орденами Ленина (1967, 1982), 3 орденами Трудового Красного Знамени (1949, 1953, 1975), орденом Отечественной войны 1-й степени (1985), орденом «Знак Почёта» (1944). Почётный доктор многих университетов мира.

1.2 Вклад в науку

Научное наследие Л. В. Канторовича огромно. Его исследования в области функционального анализа, вычислительной математики, теории экстремальных задач, дескриптивной теории функций оказали фундаментальное влияние на становление и развитие названных дисциплин. Л. В. Канторович по праву входит в число основоположников современного экономико-математического направления.

Л. В. Канторович -- автор более трехсот научных работ, которые при подготовке аннотированной библиографии его сочинений он сам предложил распределить по следующим девяти разделам: дескриптивная теория функций и теория множеств, конструктивная теория функций, приближенные методы анализа, функциональный анализ, функциональный анализ и прикладная математика, линейное программирование, вычислительная техника и программирование, оптимальное планирование и оптимальные цены, экономические проблемы плановой экономики.

Столь впечатляющее многообразие направлений исследований объединяется не только личностью Л. В. Канторовича, но и его методическими установками. Он всегда подчеркивал внутреннее единство науки, взаимопроникновение идей и методов, необходимых для решения самых разнообразных теоретических и прикладных проблем математики и экономики. Еще одной характерной чертой его творчества является тесная взаимосвязь с наиболее трудными проблемами и самыми перспективными идеями математики и экономики того времени.

Осветить творчество Леонида Витальевича в кратко невозможно. Сам он выделял из сделанного в науке две вещи: линейное программирование и K-пространства.

1.3 Научные работы Л.В. Канторовича

Научные работы:

Первые научные результаты получены в дескриптивной теории функций и множеств и, в частности, по проективным множествам.

В функциональном анализе ввёл и изучил класс полуупорядоченных пространств (К-пространств). Выдвинул эвристический принцип, состоящий в том, что элементы К-пространств суть обобщённые числа. Этот принцип был обоснован в 1970-е годы в рамках математической логики. Булевозначный анализ установил, что пространства Канторовича представляют новые нестандартные модели вещественной прямой.

Впервые применил функциональный анализ к вычислительной математике.

Развил общую теорию приближённых методов, построил эффективные методы решения операторных уравнений (в том числе метод наискорейшего спуска и метод Ньютона для таких уравнений).

В 1939-40 положил начало линейному программированию и его обобщениям.

Развил идею оптимальности в экономике. Установил взаимозависимость оптимальных цен и оптимальных производственных и управленческих решений. Каждое оптимальное решение взаимосвязано с оптимальной системой цен.

Канторович -- представитель петербургской математической школы П. Л. Чебышёва, ученик Г. М. Фихтенгольца и В. И. Смирнова. Канторович разделял и развивал взгляды П. Л. Чебышева на математику как на единую дисциплину, все разделы которой взаимосвязаны, взаимозависимы и играют особую роль в развитии науки, техники, технологии и производства. Канторович выдвигал тезис взаимопроникновения математики и экономики и стремился к синтезу гуманитарных и точных технологий знания. Творчество Канторовича стало образцом научного служения, базирующегося на универсализации математического мышления.

канторович математика вычислительный дескриптивный

2. Зарождение линейного программирования

Линейное программирование изучают десятки тысяч людей во всем мире. Под этим термином скрывается колоссальный раздел науки, посвященный линейным оптимизационным моделям. Иначе говоря, линейное программирование -- это наука о теоретическом и численном анализе и решении задач, в которых требуется найти оптимальное значение, т. е. максимум или минимум, некоторой системы показателей в процессе, поведение и состояние которого описывается той или иной системой линейных неравенств.

Одним из наиболее значительных и ярких достижений в области экономико-математических исследований было открытие Леонидом Витальевичем Канторовичем (1912--1986) метода линейного программирования. Линейное программирование -- решение линейных уравнений (уравнений первой степени) посредством составления программ и применения различных методов их последовательного решения, существенно облегчающих расчеты и достижение искомых результатов. Линейное программирование изучают десятки тысяч людей во всем мире. Под этим термином скрывается колоссальный раздел науки, посвященный линейным оптимизационным моделям. Иначе говоря, линейное программирование -- это наука о теоретическом и численном анализе и решении задач, в которых требуется найти оптимальное значение, т. е. максимум или минимум, некоторой системы показателей в процессе, поведение и состояние которого описывается той или иной системой линейных неравенств.

Сам термин «линейное программирование» был предложен в 1951 году американским экономистом Т. Купмансом. За разработку метода линейного программирования или, как сказано в дипломе Шведской академии наук, за «вклад в теорию оптимального распределения ресурсов Л.В.Канторович был удостоен Нобелевской премии по экономике (1975). Премия была присуждена ему совместно с американским экономистом Тьяллингом Чарльзом Купмансом, который несколько позже, независимо от Канторовича, предложил сходную методологию.

Разработка линейного программирования началась с поиска решения практической задачи. К Канторовичу обратились инженеры фанерного треста с просьбой найти эффективный способ распределения ресурсов, обеспечивающий наиболее высокую производительность оборудования. Работники предприятия ломали голову над тем, как при пяти станках и восьми видах сырья обеспечить оптимальный вариант выпуска фанеры. Иными словами, нужно было найти решение конкретной технико-экономической задачи с целевой функцией («функционалом») максимизировать выпуск готовой продукции.

Заслуга Канторовича состоит в том, что он предложил математический метод выбора оптимального варианта. Решая частную задачу наиболее рациональной загрузки оборудования, ученый разработал метод, получивший название метода линейного программирования. По сути дела, он открыл новый раздел математики, получивший широкое распространение в экономической практике, способствовавший развитию и использованию электронно-вычислительной техники.

С оптимальным планом любой линейной программы автоматически связаны оптимальные цены или «объективно обусловленные оценки». Последнее громоздкое словосочетание Леонид Витальевич выбрал из тактических соображений для повышения «критикоустойчивости» термина. Взаимозависимость оптимальных решений и оптимальных цен -- такова краткая суть экономического открытия Л. В. Канторовича.

В задаче по оптимизации выпуска фанеры Канторович представил переменную, которую следовало максимизировать в виде суммы стоимостей продукции, производимой всеми станками. Ограничители были представлены в форме уравнений, устанавливающих соотношения между всеми затрачиваемыми в производстве факторами (древесиной, клеем, электроэнергией, рабочим временем) и количеством выпускаемой продукции (фанеры) на каждом из станков.

Для показателей факторов производства были введены коэффициенты, названные разрешающими множителями, или мультипликаторами. С их помощью разрешается поставленная задача. Если известны значения разрешающих множителей, то искомые величины, в частности, оптимальный объем выпускаемой продукции, могут быть сравнительно легко найдены.

Канторович обосновал экономический смысл предложенных им коэффициентов (разрешающих множителей). Они представляют собой не что иное, как предельные стоимости ограничивающих факторов. Иначе говоря, это объективно значимые цены каждого из факторов производства применительно к условиям конкурентного рынка.

Для решения задачи на оптимум Канторович использовал метод последовательных приближений, метод последовательного сопоставления вариантов с выбором наилучшего в соответствии с условиями задачи.

Допустим, требуется решить транспортную задачу, обосновать наиболее рациональное распределение грузопотоков. Для примера, всего нужно перевести 180т груза из трех источников к трем потребителям, общий спрос которых также равен 180 т. Сложность в том, что груз распределен неравномерно: у одного поставщика имеется 50 т, у другого -- 60 т, у третьего -- 80 т.

Также неравнозначен спрос потребителей: он составляет соответственно 40, 85 и 55 т. Неодинаковы и расстояния -- плечи перевозки грузов -- от 1 до 6 км. Задача заключается в том, чтобы составить такой план перевозок, который отвечал бы требованию минимизации грузооборота (минимальному количеству тонно-километров).

В повседневной практике менеджеры могут заняться монотонной работой по длительному перебору возможных вариантов. Постепенно они смогут «пройти» от плана перевозок, скажем, в 750 т/км к плану в 655 т/км. Поиск потребует массу усилий, значительного количества расчетов. Главное же -- трудно установить, какой из предлагаемых вариантов является оптимальным. Допустим, найден вариант плана с грузооборотом в 575 т/км.

Но остается неизвестным, нет ли еще одного или нескольких более выгодных вариантов плана, требующих меньших затрат.

Задача становится совсем неразрешимой, если перейти от сравнительно простой схемы к составлению варианта перевозок одного или нескольких продуктов (угля, цемента, стройматериалов) в масштабе региона или страны. Даже в случае укрупнения, агрегирования исходных показателей расчеты и сопоставления вариантов потребуют проведения такого количества операций, для осуществления которых придется привлечь чуть ли не все население Украины.

Метод линейного программирования позволяет найти оптимальное решение. Линейным оно называется потому, что основывается на решении линейных уравнений. Неизвестные в них только первой степени; ни одно неизвестное не перемножается на другое неизвестное. Такие уравнения отражают зависимости, которые могут быть изображены на графике прямыми линиями.

Несколько иной целевой критерий в задаче о диете (кормовом рационе). Задача сводится к поиску оптимального рациона для кормления скотины или птицы. При постоянном изменении рыночных цен на корма фермеры подбирают оптимальный рацион при минимуме затрат, производя соответствующие расчеты на компьютере.

Впервые работа, в которой излагалось существо предложенного Канторовичем метода, была опубликована в 1939 г. под названием «Математические методы организации планирования производства». Продолжая исследования, ученый разрабатывает общую теорию рационального использования ресурсов.

В период Великой Отечественной войны, будучи профессором Военно-морской инженерной академии в блокадном Ленинграде, Канторович, опираясь на метод линейного программирования, обосновывает оптимальное размещение производственных и потребительских факторов. В 1942 г. он подготовил книгу «Экономический расчет наиболее целесообразного использования ресурсов», которая в тот период, к сожалению, не была опубликована.

Позже издается одна из наиболее крупных его работ «Экономический расчет наилучшего использования ресурсов» (1959). В этой книге, как отмечали члены Научного совета по применению математики в научных исследованиях и планировании, представлен углубленный анализ идей линейного программирования, разработанного автором ранее, и вместе с тем впервые ставится проблема разработки оптимального плана всего народного хозяйства как математической модели. Несомненной заслугой Канторовича является выявление двойственных оценок в задачах линейного программирования. Нельзя одно временно минимизировать затраты и максимизировать результаты. Одно противоречит другому. Вместе с тем оба этих подхода взаимосвязаны. Если, скажем, найдена оптимальная схема перевозок, то ей соответствует определенная система цен. Если найдены оптимальные значения цен, то сравнительно нетрудно получить схему перевозок, отвечающую требованию оптимальности.

Для любой задачи линейного программирования существует сопряженная ей, или двойственная задача. Если прямая задача заключается в минимизации целевой функции, то двойственная -- в максимизации.

Двойственные оценки дают принципиальную возможность соизмерять не только ценовые, затратные показатели, но и полезности. При этом двойственные, взаимосвязанные оценки соответствуют конкретным условиям. Если изменяются условия, меняются оценки. В известной мере поиск оптимума -- это определение общественно необходимых затрат, учитывающих, с одной стороны, трудовые, стоимостные затраты, а с другой-общественные потребности, полезности продукта для потребителей.

При непосредственном участии Канторовича и его ближайших коллег - В.В. Новожилова (автора идеи продуктово-трудового баланса) и В.С. Немчинова (обосновавшего глобальный критерий функционирования экономики) формировалась отечественная экономико-математическая школа.

Заключение

На первый взгляд, теории Л. В. Канторовича были, как он сам говорил приспособлены к плановой экономике, и т.д. Но это лишь внешняя сторона дела. Главное - учет скрытых параметров (рента), единый подход к ограничениям (труд - всего лишь одно из них) и все, что отсюда вытекает - делают его экономические приложения универсальными и необходимыми сейчас. Вообще, главный итог великого эксперимента Канторовича в том, что он подошел к экономическим проблемам вооруженный самыми современными для тех лет математическими средствами, и творчески применял их. Это не значит, что его выводы будут полностью работать и сегодня, но это, безусловно, значит, и в этом отношении Л.В. Канторович был, возможно, первым, что талант математика может в корне переустроить и преобразовать экономическую мысль.

Список использованных источников

1. История экономических учений: Учебное пособие / Под ред. А.Г. Худокормова. - М.: Изд-во МГУ, 1994. - Ч. II, гл. 30.

2. Канторович Л.В. Экономический расчет наилучшего использования ресурсов. - М.: Изд-во АН СССР, 1959.

3. Капустин В.Ф., Шабалин Г.В. Л.В. Канторович и экономико-математические исследования: итоги, проблемы, перспективы // Вестник Санкт-Петербургского университета. Сер. 5. Экономика. 1996. Вып. 2.

4. Пезенти А. Очерки политической экономии капитализма. В 2 т. - М.: Прогресс, 1976. Т. II , гл. 14.

5. Шаталин С.С. Функционирование экономики развитого социализма. - М.: Изд-во МГУ, 1982.

6. Шухов Н.С. Ценность и стоимость. - М.: Изд-во стандартов, 1994. - Ч. 2, вып. 1, гл. 8.

Подобные документы

    Понятие экономической теории, предмет ее исследования, истоки возникновения и современные аспекты развития. Взаимосвязь реальной экономики и экономической теории. Кризис экономической науки. Влияние экономической теории на современную экономику России.

    курсовая работа , добавлен 13.02.2008

    История развития российской экономики в именах людей, внесших значительный вклад в развитие экономической науки, первыми разработавших различные методики, теории, стратегии в различных областях экономики: Л.В. Канторович, Н.Д. Кондратьев, А.В. Чаянов.

    реферат , добавлен 28.02.2011

    Этапы развития экономической теории. Методология научного исследования в экономической теории. Заслуга меркантилистов как первой школы экономического анализа. Сущность трудовой теории стоимости А. Смита. Положения кейнсианской экономической теории.

    презентация , добавлен 22.03.2014

    Изучение экономической теории, в соответствии с которой денежная масса играет определяющую роль в стабилизации и развитии рыночной экономики. Исследование деятельности и трудов основоположников теории монетаризма. Основные положения количественной теории.

    презентация , добавлен 08.11.2013

    Изучение теоретических аспектов истории возникновения экономической теории. Содержание предмета, этапы становления, основные функции и методы исследования экономической теории. Изучение ее современного состояния и определение перспектив развития.

    курсовая работа , добавлен 11.01.2011

    Вклад античных мыслителей в развитие экономической науки. История возникновения меркантилизма, классической политической экономии, марксизма, неоклассики - направлений экономической теории. Развитие теории регулируемого капитализма и институционализма.

    реферат , добавлен 18.04.2012

    Два основных направления общей экономической теории: изучение стоимости и прибавочной стоимости, а также эффективности производства. Общенаучные и специальные для экономической теории методы исследования. Количественный анализ и метод научной абстракции.

    доклад , добавлен 11.02.2010

    Знакомство с предметами и объектами исследования современной микроэкономики. Общая характеристика методов экономического анализа микроэкономической теории. Рассмотрение уровней экономической науки. Особенности специфики микроэкономического подхода.

    дипломная работа , добавлен 08.01.2015

    Предмет экономической теории. Зарождение и развитие экономической теории. Экономические законы и экономические категории. Различные подходы к анализу экономической динамики. Основные функции и методы исследования экономической теории.

    курсовая работа , добавлен 21.04.2006

    Экономические учения меркантилизма, марксизма, кейнсианства, неолиберализма, монетаризма и анституционализма. Изучение теории рынков и кризисов М. Туган-Барановского, основы инвестиционной теории циклов М. Кондратьева. Разработка методологии планирования.

Л.В. Канторович - экономист - внес выдающийся вклад в экономическую науку. С его именем связан естественнонаучный подход к исследованию широкого круга проблем планирования. Л.В. Канторович заложил фундамент современной теории оптимального планирования. Развернутому изложению основных идей этой теории посвящена его капитальная монография “Экономический расчет наилучшего использования ресурсов” . Стержнем этой книги является формулировка основной задачи производственного планирования и динамической задачи оптимального планирования. Указанные задачи достаточно просты, но в то же время учитывают важнейшие черты экономического планирования. Одно из привлекательных качеств состоит в том, что они базируются на схеме линейного программирования и, следовательно, на развитом аналитическом аппарате и обширном наборе эффективных вычислительных средств, часть из которых предложил сам Леонид Витальевич.

Значителен его вклад в проблему ценообразования - одну из коренных, затрагивающую, по существу, все сферы функционирования общества. Л.В. Канторович установил связь цен и общественно-необходимых затрат труда. Он дал определение понятия оптимума, оптимального развития, конкретизировав, в частности, что следует понимать под максимальным удовлетворением потребностей членов общества. Из его положения о неразрывности плана и цен вытекает зависимость общественно-необходимых затрат труда от поставленных целей общества.

Таким образом, цели общества, оптимальный план и цены составляют одно неразрывное целое. Им указаны конкретные условия, при которых объективно обусловленные оценки оптимального плана совпадают с полными (прямыми и сопряженными) затратами труда. Определение перспектив экономики, наличие гигантских “естественных монополий” заставляет сохранить для них расчет, по крайней мере, опорных цен, согласованных и взаимно, и с интересами других отраслей экономики.

Математические модели получили отражение в некоторых курсах политической экономии. В работах Л.В. Канторовича исследовался ряд основных проблем экономической теории и практики хозяйствования. Указывая на недостатки действовавшей экономической системы, Л.В. Канторович подчеркивал, что система экономических показателей должна быть единой, построена по единому принципу. В связи с этим значительную часть своих работ в этой области Леонид Витальевич посвятил разработке и анализу конкретных экономических показателей.

В работах самого Л.В. Канторовича особое внимание было уделено оценке земельных ресурсов и воды, учету этих показателей в (заготовительных) ценах на сельскохозяйственную продукцию. Предложены оригинальные подходы к их расчету (сочетание метода наименьших квадратов и линейного программирования). На этой основе были даны рекомендации по улучшению системы экономических показателей и расчетов в сельском хозяйстве. Значение предложенных им принципов расчета в складывающейся экономической системе только возрастает.


В работах Л.В. Канторовича вскрывается сущность понятия показателя эффективности капиталовложений, показывается его роль в экономических расчетах принятия решений, предлагается методика определения величины этого нормативного показателя. Таким образом, Л.В. Канторович дал убедительное научное обоснование необходимости применения норматива эффективности и на основе оптимизационного подхода дал объективный путь его расчета.

В работе “Амортизационные платежи при оптимальном использовании оборудования” (1965) Л.В. Канторовичем была вскрыта сущность понятия амортизации. Он показал, как можно повысить эффективность использования оборудования, разделив амортизационные платежи на два типа, и с помощью остроумной математической модели указал, как определить численную величину коэффициента амортизационных отчислений. Это изменение позволило сделать ряд принципиальных выводов о необходимости корректировки принятой методики расчета амортизации.

Специальный интерес проявлял Леонид Витальевич к проблемам транспорта. Еще в его первых экономических работах были даны общий анализ транспортной задачи и метод потенциалов для ее решения. Этот метод широко использовался на транспорте (железнодорожном, автомобильном, морском, воздушном) и в органах централизованного снабжения для рационального прикрепления и рациональной организации перевозок. Он, безусловно, сохраняет свое значение и сейчас наряду с широко используемыми методами диспетчерского управления и расчетами маршрутов.

В работах “Об использовании математических моделей в ценообразовании на новую технику” (1968) и “Математико-экономический анализ плановых решений и экономические условия их реализации ” (1971) Л.В. Канторович исследовал проблему эффективной работы транспорта с экономической точки зрения, показал, каковы должны быть транспортные тарифы в зависимости от вида транспорта, груза, расстояний и т. д. В ряде работ им рассматривались и вопросы комплексной транспортной системы - взаимосвязь транспорта с другими отраслями народного хозяйства и распределение перевозок между видами транспорта с учетом экономичности и в особенности энергозатрат. Эти работы сохраняют свое значение и сейчас.

Помимо проблем народнохозяйственного планирования, Л.В. Канторович рассмотрел вопросы, относящиеся к отраслевому планированию. Наиболее простой и часто используемой является предложенная им модель, базирующаяся на транспортной задаче. На ряд более сложных моделей, в частности производственно-транспортной, динамической, декомпозиционной, им указано в работах, посвященных текущему и перспективному отраслевому планированию (“Возможности применения математических методов в вопросах производственного планирования”, 1958) и др. Эти вопросы нашли отражение в исследованиях по отраслевым АСУ.

Большое внимание Леонид Витальевич уделял вопросам рационального использования труда. Им было предложено введение платежей предприятий за использование труда дифференцированных по профессиям, половозрастным признакам и территории. Он указывал также на возможности научного, количественного подхода к социальным проблемам, вопросам совершенствования сферы услуг и др. Вопросы экономического стимулирования рационального использования трудовых ресурсов остаются актуальными и сейчас.

В течение ряда лет и особенно в последние годы Л.В. Канторовича интересовали проблемы эффективности технического прогресса, в частности вопросы внедрения в производство новой техники.

Особый интерес представляет обоснование предложения об установлении двух уровней цен на принципиально новую продукцию в первые годы ее выпуска. Важное значение имел также вывод о необходимости более высоко оценивать вклад в национальный доход технического прогресса и науки, чем это получалось по принятым тогда методам расчета (“Ценообразование и технический прогресс”, 1979).

Л.В. Канторович уделял большое внимание внедрению разработанных им методов в экономическую практику. В первую очередь в этой связи следует отметить цикл работ, посвященных методам рационального раскроя материалов, начатый Леонидом Витальевичем еще в 1939 - 1942 гг. В 1948 - 1950 гг. эти методы были внедрены на Ленинградском вагоностроительном заводе имени Егорова, на Кировском заводе и распространены впоследствии на некоторых других предприятиях. Более широкому распространению методов рационального раскроя способствовал ряд проведенных по инициативе Л.В. Канторовича совещаний.

С 1964 г. по предложению Леонида Витальевича проводилась большая работа по внедрению системных методов расчета оптимальной загрузки прокатных станов в масштабах всей страны.

Являясь членом Государственного комитета по науке и технике, Л.В. Канторович вел большую организационную работу, направленную на совершенствование методов планирования и управления народным хозяйством. Он возглавлял Научный совет ГКНТ по использованию оптимизационных расчетов, состоял членом многих ведомственных советов и комиссий (по ценообразованию, транспорту и др.). Вклад Леонида Витальевича в исследование проблемы эффективности производства и, в частности, проблемы эффективности капитальных вложений исключительно велик.

ISSN 1992-6502 (P ri nt)_

2014. Т. 18, № 1 (62). С. 186-197

Ъыьмт QjrAQnQj

ISSN 2225-2789 (Online) http://journal.ugatu.ac.ru

УДК 621.35, 004.02

Теория оптимального использования ресурсов Л. В. Канторовича в задачах раскроя-упаковки: обзор и история развития методов решения

Ю. И. Валиахметова, а. С. Филиппова

1 ФГБОУ ВПО «Башкирский государственный аграрный университет» (БГАУ) 2 ФГБОУ ВПО «Башкирский государственный педагогический университет им. М. Акмуллы» (БГПУ)

Поступила в редакцию 04.02.2014

Аннотация. Приводятся примеры постановок задач раскроя-упаковки, актуальность которых подтверждается их разнообразием и многогранностью прикладного значения. Основополагающими для развития методов решения подобных задач явились работы Л. В. Канторовича. Приведен обзор методов решения классических задач раскроя-упаковки, разработанных советскими и российскими учеными за последние 80 лет, в том числе и научными школами СССР и России. Даны краткие описания методов и история их развития.

Ключевые слова: раскрой; упаковка; рациональное использование ресурсов; оптимизация; точные методы; эвристические методы, алгоритмы

Посвящается 100-летию со дня рождения нобелевского лауреата Л. В. Канторовича

ВВЕДЕНИЕ

Вклад, сделанный замечательным и талантливым ученым Леонидом Витальевичем Канторовичем в различные области математики и экономики, имел огромное значение в развитии решения прикладных производственных задач. Кроме того, его концепция оптимальной экономической модели на макроэкономическом уровне и сегодня обладает огромным потенциалом. И в речи шведского профессора Рагнара Бентзеля, которую в 1975 г. он произнес, представляя лауреатов Нобелевской премии по экономике Л. В. Канторовича и Т. Купманса, отмечено всеобщее значение концепции для любой экономики, независимо от ее социально-политической формы: «Поскольку запас производственных ресурсов всюду ограничен, каждое общество сталкивается с кругом вопросов, касающихся оптимального использования имеющихся ресурсов и справедливого распределения доходов между гражданами. Точка зрения, с которой могут рассматриваться подобные нормативные вопросы, не зависит от политической организации рассматриваемого общества» . Поэтому исследование и разработка методов

Работа поддержана грантом РФФИ 12-07-00631-а.

решения задач рационального использования ресурсов актуальны и по сей день.

1. БАЗОВЫЕ МЕТОДЫ

ОПТИМАЛЬНОГО ИСПОЛЬЗОВАНИЯ РЕСУРСОВ

Основополагающую роль в становлении и развитии теории оптимального использования ресурсов и линейного программирования сыграла опубликованная профессором Л. В. Канторовичем в 1939 г. брошюра , где рассматривались различные практические задачи организации производства, в которых требовалось найти наилучший вариант решения. Книга была написана после консультации сотрудников Фанерного треста по вопросам решения задач, которые не удавалось решить традиционными в то время методами. Л. В. Канторович предложил метод разрешающих множителей (индексов), который устанавливает принципиальную возможность нахождения наилучшего решения для многих задач народного хозяйства, в том числе и для задачи массового раскроя. Несмотря на огромный круг научных интересов, в последующие годы Л. В. Канторович неоднократно возвращался к проблеме рационального раскроя, например .

В 30-х гг. прошлого века были заложены основы теории раскроя пиловочного сырья, основоположником которой стал Х. Л. Фельдман . Он предложил математический подход для

решения задачи о максимальных поставах при распиловке бревен. Вместе со своими последователями он создал систему, ориентированную на максимизацию объемного и качественного выхода обрезных пиломатериалов. Точная математическая схема решения не в полной мере учитывала реальные условия, такие как качественные характеристики сырья и пилопродукции, поэтому результаты на практике могли быть и неверными. Позднее В. А. Залгаллером разработан графический метод составления максимальных поставов, основанный на геометрическом признаке экстремума. Предложенный В. А. Залгаллером метод позволил приблизить теорию максимальных поставов к условиям производства .

Разработанная и усовершенствованная теория, однако, и в настоящее время не может дать ответа на многие проблемы технологии лесопиления, в связи с чем актуально ее дальнейшее совершенствование. Среди основных причин этого явления: технический прогресс, изменения размерно-качественной характеристики поступающего в раскрой пиловочного сырья и его породного состава, ужесточение требований экологов, изменение действующих стандартов на сырье и пиленую продукцию.

2. МНОГООБРАЗИЕ ЗАДАЧ РАСКРОЯ И УПАКОВКИ

Задачи раскроя представляют собой важную технологическую проблему, оптимальное решение которых позволяет минимизировать расход имеющихся ресурсов. Это такие задачи, как:

Раскрой линейного материала;

Продольная резка лент и рулонов;

Раскрой листов на прямоугольные заготовки;

Использование материалов смешанной длины;

Раскрой для серийных и несерийных изделий;

Упаковка трехмерных контейнеров;

Раскрой фигурных заготовок;

Размещение кругов;

Геометрическое покрытие областей с препятствиями элементами различной формы;

Задача о выборе наилучших размеров материала для последующего раскроя;

Упаковка/покрытие элементами случайных размеров,

и многие другие.

Подобные задачи встречаются на практике в машиностроении, металлургии, деревообраба-

тывающей и швейной промышленности, целлюлозно-бумажной индустрии и др.

Многие задачи, на первый взгляд не относящиеся к классу задач раскроя и упаковки, в конечном итоге сводятся к ним. Например, задачи о составлении расписания, задачи маршрутизации, задачи декомпозиции многосвязных ортогональных полигонов, а также многие другие прикладные задачи.

Если ценность раскраиваемого ресурса высока, на практике рассматривают также и остаточные задачи: производится попытка использовать отходы материала, получившиеся при решении предыдущих задач раскроя, упаковки или геометрического покрытия.

Задачи раскроя, упаковки или покрытия могут возникать как промежуточное звено в других задачах или же чередоваться в рамках одной задачи. Например, можно рассмотреть логистическую задачу, где каждому транспортному средству сопоставляется маршрут следования по потребителям и набор соответствующих этим потребителям грузов. Тогда поиск маршрута следования каждого транспортного средства, а также нахождение плана размещения грузов в грузовом отсеке являются задачами класса раскроя-упаковки. Дополнительно при размещении грузов можно учесть порядок следования транспортного средства - так, чтобы грузы, предназначенные последнему клиенту, загружались первыми .

Каждая из предметных областей вносит свои дополнительные требования в способ решения задач, и, следовательно, в способ адаптации известных алгоритмов.

В данной статье приведен краткий обзор методов решения классических задач раскроя-упаковки, разработанных советскими и российскими учеными за последние 80 лет. Под задачами раскроя-упаковки (Cutting and Packing, C&P) понимается широкий класс проблем, допускающих различное прикладное толкование. К ним можно отнести следующие задачи:

Раскрой запаса материала (при раскрое на определенные заготовки минимизация исходного материала);

Плотное размещение геометрических объектов в заданной области (размещение грузов, товаров на складе и т.п.);

Упаковка контейнеров (размещение предметов в ограниченную область);

Выбор ассортимента (выбор при заказе одного размера из стандартных);

Планировка помещений (максимизация полезных областей при планировании с учетом технологичных требований);

Обеспечение ритмичности производственного процесса (задачи о составлении расписания, составление расписания многопроцессорных систем);

Распределение производственных мощностей (распределение памяти вычислительной машины);

Задача о поставе в лесопилении (расположение пил при пилении бревна на доски разной толщины, выбор числа пил для максимизации выхода);

Раскрой древесного ствола по длине (максимизация продукции при раскрое ствола на круглые сортименты);

Раскрой досок (раскрой на заготовки, более близкие к окончательной продукции; обойти пороки и максимизировать суммарную кубатуру или суммарную коммерческую цену);

Раскрой листового материала на случайные заготовки (раскрой материала с учетом опережения-запаздывания производства заготовок);

Максимальное (минимальное) геометрическое покрытие (расстановка минимального количества единиц оборудования на заданной области) и др.

В свою очередь каждая из них может быть различным образом конкретизирована.

Общим для задач этого класса является наличие двух групп объектов. Между элементами этих групп устанавливается и оценивается соответствие. Различаются задачи линейного (одномерного), прямоугольного (двухмерного) и па-раллелепипедного (трехмерного) раскроя-упаковки. Среди этих задач выделяются гильотинный раскрой и упаковка. Особо выделены проблемы нестинга - размещения деталей сложной геометрической формы в заданных областях. Для них на первый план выступают информационные проблемы задания фигур, учета и обеспечения их непересечения, кодировки и др. Перечень геометрических свойств заготовок и материала может дополняться и учитываться в математической модели некоторыми физическими и/или экономическими показателями. Подробная классификация основных моделей задач С&Р в России приведена в .

В 40-х гг. методы для решения задач раскроя были направлены в первую очередь на задачи массового производства, где можно пренебречь целочисленностью результатов. Предложенный Л. В. Канторовичем способ решения подобных задач позволял найти оптимальный раскрой, однако трудоемкость процесса решения вручную требовала адаптации к производственным условиям и совершенствования вычислительного математического аппарата. Именно этому вопросу в основном и были посвящены научные разработки последователей и соратников Л. В. Канторовича до 50-60-х гг. Далее появилась возможность реализации алгоритмов на ЭВМ. Программы позволяли находить оптимальные планы раскроя мерных линейных материалов и оптимальных планов раскроя прямоугольных листов на прямоугольные заготовки. Начиная с 70-х гг. особое внимание исследователей этой области было направлено на решение задач единичного и мелокосерийно-го производства.

Впервые детально вопросы раскроя были проработаны Л. В. Канторовичем совместно с В. А. Залгаллером в Ленинградском отделении Математического института АН СССР в 40-х гг. . Практическая проверка успешности разработанных ими математических способов решения проведена на Ленинградском вагоностроительном заводе в 1948-1949 гг. Ввиду технологических требований и трудоемкости вычисления метода разрешающих множителей была проведена большая работа по развитию и адаптации математического аппарата к производственной действительности того времени за счет введения новых расчетных и технологичных приемов. Так, В. А. Залгаллер разработал способ подбора целочисленных индексов, предложил решение плоской задачи с помощью вспомогательной линейной задачи, приемы раскроя материала смешанной длины и различные технические приспособления. Все разработанные и практически апробированные методы того периода, методика их использования были описаны в книге «Рациональный раскрой промышленных материалов», изданной в начале 1951 г. . Задачи раскроя рассматривались авторами как примеры применения линейного программирования (Linear Programming, LP). При решении задач раскроя применяется модель LP с неявно заданной информацией о раскроях (столбцах матрицы). Фактически эта книга была отчетом об удачном практическом внедрении в 1948-1949 гг. линейного программирования для решения промышленных задач. Первые зарубежные же публикации, посвященные LP, отно-

сятся к 1949 г. Основные расчеты, приведенные в книге , были выполнены вручную. Для преодоления трудностей, связанных с построением допустимых карт раскроя, авторами были предложены приемы, которые, по существу, предвосхитили идеи динамического программирования.

Для решения задачи генерирования раскроя были разработаны основанные на динамическом программировании методы для задачи линейного раскроя , для гильотинного раскроя - сеточный метод генерирования раскроев с максимальной оценкой , считающие полную таблицу индексов. И. В. Романовский предложил метод склейки , ограничивающийся состояниями, соответствующими скачкам. Позднее Э. А. Мухачева разработала условные методы генерирования раскроев на каждом шаге процесса линейного программирования, учитывающие специфику реального производства . В то время основной целью этих и многих других работ являлось применение линейного программирования в сфере производственных задач. Эта цель в той или иной мере была достигнута в условиях массового и серийного производства.

3. ДЕЯТЕЛЬНОСТЬ СОВЕТСКИХ НАУЧНЫХ ШКОЛ ПО ИССЛЕДОВАНИЮ ЗАДАЧ РАСКРОЯ-УПАКОВКИ

Несомненно, развитие и широкое применение это направление получило с появлением ЭВМ: например, первая программная реализация на ЭВМ метода шкалы индексов . В приведен способ и программа для рационального решения массовой линейной задачи, затрачивающий приемлемое время для расчета. Расчет рациональных карт раскроя прямоугольных листов в 60-е гг. для большого числа заготовок (более 60) практически не представлялся возможным. А примеры меньшей размерности требовали многих часов работы программ на ЭВМ .

Так, применение ЭВМ для решения и исследования задачи массового раскроя в начале 60-х гг. прошлого века стало первым шагом для зарождения уфимской научной школы под руководством Э. А. Мухачевой. Элита Александровна Мухачева в 1962 г. поступила в аспирантуру Новосибирского академического городка института математики СО АН СССР в отдел к создателю теории линейного программирования Леониду Витальевичу Канторовичу и получила задание разработать программу для массового раскроя материала, результат описан в .

Приоритет Л. В. Канторовича в этой области уже был признан в мире, он заведовал матема-тико-экономическим отделом. Сотрудник отдела, ученик и соратник Л. В. Канторовича, доктор физико-математических наук Г. Ш. Рубинштейн стал научным руководителем Элиты Александровны. В начале 1967 г. она защитила диссертацию «Численные методы решения некоторых классов задач линейного программирования» на соискание ученой степени кандидата физико-математических наук1. С тех пор в Уфимском государственном авиационном техническом университете ведутся активные исследования в данной области.

Для задач штучного производства, являющихся по своей сути проблемами дискретной оптимизации, решение с помощью LP - это упрощение, позволяющее получить результат, близкий к оптимальному, при дополнительных ограничениях, возникающих в условиях серийного и массового производства. В дальнейшем задачи С&Р рассматривались уже без этого упрощения, как прикладные проблемы комбинаторных задач исследования операций. Задачи С&Р являются типичными представителями NP-трудных проблем. Ввиду неполиномиальной сложности точных алгоритмов для задач С&Р авторами многих работ и по сей день уделяется значительное внимание приближенным методам, а при разработке точных алгоритмов -процедурам сокращения полного перебора и вычислению нижних границ.

При решении задач С&Р необходимо минимизировать используемый материал (количест-

1 В 1983 г. Э. А. Мухачева (1930-2011) защищает докторскую диссертацию «Прикладные задачи комбинаторной оптимизации, в частности, задача раскроя и упаковки» и становится первой женщиной-доктором наук УАИ (Уфимского авиационного института). Работая над диссертацией, она консультировалась у Л. В. Канторовича, В. А. Залгаллера и в Новосибирском академическом городке. Из 59 лет работы в Уфимском авиационном университете (УАИ, УГАТУ) 34 года заведовала кафедрами. Научная значимость трудов Э. А. Мухачевой и ее учеников колоссальна. Студенты, аспиранты, ученые нашей страны изучали математическое программирование, математические методы исследования операций, теорию и методы расчета в задачах раскроя-упаковки по учебникам, монографиям и статьям, автором которых является Э. А. Мухачева. Многие из ее последователей по сей день продолжают разработки в России и за рубежом. Результаты многочисленных работ внедрены, например, на Кировском заводе (г. Ленинград), при производстве тракторов на Ижевском механическом заводе, в Ульяновском авиационном комплексе и др.

во, площадь или объем). При этом оптимальное значение будет больше либо равно нижней границы и меньше либо равно верхней границы.

С помощью границ оценивается решение, полученное тем или иным методом. Верхняя граница, например, полученная приближенно любым эвристическим методом и уточняемая в ходе вычислений, применяется в методе ветвей и границ для сокращения множества просматриваемых узлов дерева решений: отсеиваются узлы, у которых оценка не меньше верхней границы.

При решении задач точными методами использование границ позволяет сократить время работы алгоритма. Так, большее время работы точного алгоритма затрачивается на доказательство оптимальности найденного решения, возможно, полученного уже в начале вычислений. Для этого этапа как раз очень важна нижняя граница, значение которой должно быть максимально близко к оптимуму. Проблема подсчета нижних границ остается основной при разработке эффективных точных методов решения задач С&Р. Особый интерес для вычислений представляют уточняемые нижние оценки, они позволяют либо быстро отсекать «слабые» частичные решения либо просто остановить вычисления по достижении достаточно хорошего результата. В предложен метод построения нижних границ, основанный на линейной релаксации. Показано, что оптимальное значение исходной задачи можно оценить с помощью решения соответствующей задачи линейного раскроя. Предложено уточнение этой нижней границы, использующее метод фиксации определенных переменных.

Традиционными для единичных проблем С&Р являются математические модели целочисленного линейного программирования (ЦЛП). Но надо отметить и другие, например, предложенные в начале XXI в.: матричная модель - представление прямоугольной упаковки двумя бинарными матрицами, характеризующими всевозможные пересечения прямоугольников с сечениями контейнерной области параллельно координатным осям ; модель, предложенная В. Н. Марковым, в которой лист материала описывается растровой последовательностью точек .

Методы, основанные на ЦЛП, оказались приемлемыми для решения задач линейного (одномерного) и гильотинного раскроя. Что касается классов задач негильотинной упаковки, то алгоритмы LP вряд ли можно сейчас считать подходящими для их решения. Пока для этих задач большинство существующих точных ме-

тодов решения сводятся к перебору всего множества допустимых решений. Методы улучшенного перебора объединены и для этих задач под названием «метода ветвей и границ». Еще в 1973 г. И. В. Романовский и Н. П. Христова предложили для решения дискретных минимаксных задач метод дихотомии . Для получения нижней оценки в авторы предложили использовать релаксацию задачи, переходя от множества допустимых решений к некоторому его подмножеству.

В 60-х гг. в г. Харькове под руководством В. Л. Рвачева и Ю. Г. Стояна разрабатываются подходы к решению задач с фигурными заготовками . Для описания фигур, ограниченных контуром из конечного числа отрезков и дуг окружностей, вводятся специального типа Я-функции, которые позволяют определить принадлежность точки к фигуре одним неравенством, что позволяет упростить проверку непересечения фигур между собой. Поиск оптимальных размещений осуществляется методом составления большого числа случайных ненале-гающих положений, каждое из которых затем переводится градиентным методом в локально минимальное положение. Этот подход получил и дальнейшее развитие. Используемые как средство математического и компьютерного моделирования R-функции внесли существенный вклад в формализацию 2D- и 3D-задач С&Р и разработку методов их решения .

Следует отметить значительный вклад, внесенный в теорию и практику моделирования размещения геометрических объектов научной школой Ю. Г. Стояна (Украина, Институт проблем машиностроения НАН). В конце 60-х гг. на базе Уфимского авиационного института под руководством Э. А. Мухачевой зарождается еще одна научная школа, в которой активно и по сей день занимаются проблемами С&Р, в том числе и задачами с произвольной формой заготовок . Начиная с 60-х гг. ведутся исследования задач фигурного раскроя в Горьковском университете, в коллективе Л. Б. Беляковой, в Институте технической кибернетики АП БССР, г. Минск. В это же время упрощенными алгоритмами для решения задач фигурного раскроя с применением ЭВМ занимаются на многих производственных предприятиях СССР .

Подробнее обзор публикаций до 70-х гг. представлен в дополненном втором (1951 г.) и третьем (2012 г.) изданиях книги . Третье переиздание было подготовлено с участием В. А. Залгаллера.

альных условий, касающихся различных отраслей: металлургии, судостроения, деревообработки, бумажной и швейной промышленности. Например, в Карельском институте лесной промышленности под руководством И. В. Соболева , в Петрозаводском государственном университете под руководством В. А. Кузнецова ведется работа, связанная с применением методов оптимизации на промышленных предприятиях Карелии и Северо-Запада России. Здесь развиваются методики решения оптимизационных задач в целлюлозно-бумажной промышленности . Они реализованы в комплексах прикладных программ, направленных на решение проблем, связанных с раскроем и планированием работ в деревообрабатывающей промышленности. Помимо задач, связанных непосредственно с раскроем, рассматриваются технологические проблемы при организации производства: для удобства комплектации необходимо производить одновременно или почти одновременно все детали изделия, выпускаемого в данный момент, а особенности предварительного раскроя ограничивают возможности укладки этих деталей в прямоугольники, что приводит к большим отходам. Это, например, распиловка бревен, раскрой гофрокартона.

В 70-х гг. в Омском государственном университете под руководством А. А. Колоколова также начинаются исследования и разработки алгоритмов решения задач дискретной оптимизации, сводящихся к задачам раскроя-упаковки. Основное внимание этой научной группы уделено задачам линейного целочисленного программирования, прикладным задачам размещения, задачам раскроя, встречающимся в легкой промышленности и швейном производстве. Разработаны и исследованы новые алгоритмы и подходы, основанные на использовании регулярных разбиений релаксационных множеств, L-разбиений. Надо отметить, что решением проблем с автоматизацией процесса раскроя занимаются и по сей день в Омске , Новосибирске . Обзор существующих САПР конструкторской и технологической подготовки производства одежды представлен в . Хотя главной задачей этих систем является моделирование индивидуальной и мелкосерийной одежды, а процесс раскроя материала не использует сложных оптимизационных методов расчета. Можно отметить работы А. А. Петунина проводимые в Екатеринбурге с конца 70-х гг., которые направлены на автоматизацию проектирования раскроя листового материала, . Они позволили позже разработать универсальную систему «Сириус» с собствен-

ным графическим интерфейсом, ориентированную на широкий спектр оборудования для резки листовых материалов .

4. СОВРЕМЕННОЕ РАЗВИТИЕ МЕТОДОВ РЕШЕНИЯ ЗАДАЧ РАСКРОЯ-УПАКОВКИ

Новые эффективные точные методы развивались по нескольким направлениям. С одной стороны, совершенствовались инструменты ЦЛП: моделирование, методы ветвлений, секущие плоскости. С другой стороны, развивались чисто комбинаторные методы, получившие позже наиболее полное развитие в рамках методов искусственного интеллекта.

Например, в представлен гибридный метод непрерывной оптимизации и переборного алгоритма решения задачи упаковки многоугольников, где в качестве частного случая рассматривается задача упаковки прямоугольников в полосу, разработана стратегия построения множества систем уравнений и набора правил для отсечения бесперспективных вершин дерева решений. Этот метод получил и дальнейшее развитие в конце 90-х гг.

Задача одномерного раскроя с единичными комплектностями является наиболее подходящей для решения комбинаторными методами. Одним из первых был метод ветвей и границ на основе релаксации ЛП с генерацией столбцов. В большинстве вариантов метода ветвление осуществляется по отдельным столбцам. В работе автор для данной задачи применяет дихотомический вариант обобщенного метода решения дискретных минимаксных задач . В нем на каждом этапе ветвление по дереву решений происходит по двум подмножествам, что сокращает перебор допустимых решений. Для задач одномерного раскроя с целочисленными комплектностями - 1D cutting-stock problem (1DCSP) - методы ЦЛП являются более эффективными вследствие комбинаторного взрыва. В большинстве из них используется модель 1DCSP с генерацией столбцов, впервые предложенная в работе Л. В. Канторовича и А. А. Залгаллера . Эта модель имеет очень маленький эмпирический разрыв двойственности. Количество переменных модели не ограничено полиномиально от размерности задачи (количества предметов), поэтому довольно трудно оценить количество столбцов, генерируемых при поиске оптимума. На практике задача быстрого нахождения ЛП оптимума, т. е. вопрос ускорения сходимости процесса генерации столбцов, является очень актуальной.

Вопрос об эффективном применении точных комбинаторных методов решения задач раскроя-упаковки большой размерности остается открытым до сих пор. Ведутся исследования для определения отсечений, которые позволяют не рассматривать симметричные варианты правил сокращения перебора. Например, в рассмотрен метод с процедурами доминантности, группировки, определения допустимого резерва, позволяющий сократить перебор.

Математический аппарат, позволяющий вычислить оптимум в негильотинной задаче C&P за конечное число операций впервые предложен в , где задача упаковки прямоугольников сформулирована как проблема комбинаторной оптимизации и предложен «метод зон» для нахождения оптимального решения. На основе понятия «зоны» доказывается, что для любой упаковки прямоугольников можно указать такой их порядок, при котором каждый следующий прямоугольник не пересекается ни с одной из зон предыдущих (топологическая сортировка). Показано, что среди упаковок, построенных на ступенчатых границах, есть оптимальные. Для сокращения числа вариантов предложен ряд отсечений, позволяющих отбрасывать варианты, симметричные уже рассмотренным, или заведомо не лучше других.

Для решения комбинаторных задач из класса NP-трудных с успехом применяются эвристические методы. Среди эвристик высокого уровня выделяются жадные алгоритмы, позволяющие достигать верхние границы . К многопроходным эвристикам относится метод последовательного уточнения оценок (Sequential Value Correction, SVC), берущий начало от идеи объективно-обусловленных оценок Л. В. Канторовича . Метод SVC реализуется по модифицированной схеме «первый подходящий с упорядочиванием» с процедурами приоритета и повторения. Упорядочивание элементов основано на экономическом смысле двойственных переменных в линейном программировании. Метод можно назвать общим для решения задач C&P: он применим для задач линейного и гильотинного раскроя, 2D- и SD-упаковки, а также и для фигурного раскроя .

При реализации схем построения решений в комбинаторных задачах используют различные способы представления допустимого решения в виде кода, который с помощью соответствующего правила (декодера) однозначно преобразуется в план упаковки. Способы кодирования и декодирования существенным образом влияют на эффективность получаемых решений. При этом сам декодер является однопроходным ме-

тодом. Простым и популярным декодером является «нижний левый», который однозначно позволяет получить план упаковки по коду в виде последовательности (списка) прямоугольных деталей. В уфимском коллективе разработаны новые блочные декодеры , позволяющие представить прямоугольную упаковку в виде линейного раскроя специальной структуры, для которой используются линейные методы решения, за счет чего получают быстрые и эффективные решения. Аналогично представляется и 3D-упаковка.

Если при выбранном способе декодирования повторять решение, несколько изменяя уже использованный код, то значение целевой функции изменится в лучшую или худшую сторону. При многократном повторении можно получить достаточно хорошее решение. На этом принципе в сочетании с комбинацией различных декодеров разработаны технологии конструирования алгоритмов локального поиска для C&P .

Таким образом, внесение в детерминированный алгоритм элементов случайности повышает его результативность. Так, например, повысилась эффективность упомянутого выше алгоритма SVC после внесения в него элементов стохастики. Бурное развитие вероятностных методов локального поиска оптимума началось 20 лет назад с появлением метаэвристик для решения NP-трудных задач. В России обзор вероятностных методов локального поиска оптимума для NP-трудных задач сделан в . В обзоре обсуждаются общие схемы алгоритмов поиска с запретами, имитации отжига, эволюционного и генетических алгоритмов. Показано, что эти разные по своей структуре алгоритмы используют общую математическую конструкцию конечных цепей Маркова, а также доказывается, что при корректной реализации процедур поиска указанных метаэвристик, когда отсутствует эффект «застревания» в локальном оптимуме, будет наблюдаться сходимость по вероятности наилучшего найденного решения к оптимальному решению задачи.

Первыми среди сложных метаэвристик для задач C&P стали применяться генетические алгоритмы. Возможны различные способы кодирования и приемы идентификации простейших структур (ген, аллели, хромосома). Это порождает различные классы генетических алгоритмов . Генетические алгоритмы успешно разрабатываются и для решения задач фигурного раскроя . Исследуются и используются и другие метаэвристики. Кроме того, в последние

годы активно развивается применение искусственного интеллекта .

Изменения в стране, начатые в 80-х гг., позволили российским ученым активно публиковать свои работы за рубежом в изданиях, посвященных исследованиям операций, участвовать в международных конференциях. Сообщество под названием SICUP (Специальная группа по интересам в области раскроя-упаковки) объединяет многих исследователей, заинтересованных в данной проблеме по всему миру. SICUP организует сессии по проблемам С&Р в рамках международных конференций. Было принято решение об организации нового сообщества ESICUP (http://pagmas.fe.up.pt/~esicup/tiki-

index.php). И обратная ситуация - участие зарубежных исследователей в российских специальных изданиях , совместные исследования, например .

В СССР проводились научно-практические семинары и конференции в Ленинграде, Уфе, Звенигороде и других городах. В современный период организуются секции в рамках работы конференций: Математическое программирование и приложения (Екатеринбург, ИММ УРО АН РФ); Дискретный анализ и исследование операций (DAOR, Новосибирск, ИМ СО РАН); Компьютерные науки и информационные технологии (CSIT, Уфа, УГАТУ); Ресурсосберегающие технологии (ОПТИМ, С.-Петербург); Методы оптимизации и их приложения (Байкальская международная конференция по математическому программированию, Иркутск); Дискретная математика и экономические приложения (Омск, филиал ИМ СО РАН) и др.

В последнее десятилетие теоретические аспекты проблемы раскроя-упаковки и геометрического покрытия в виду их NP-сложности остаются актуальными. Основное внимание российских научных исследований методов и задач C&P связаны не только с усовершенствованием эффективности методов их решения, но и с проблемами в которых задачи раскроя и упаковки включены в качестве подзадач. Это накладывает дополнительные условия и ограничения в постановке задач. Например: в лесопромышленности, в легкой промышленности, при проектировании электронных схем, в транспортной и складской логистики, в строительной и судостроительной отраслях и др.

Так, например, в работах исследуются задачи планирования производства гофро-тары, выбора транспортных средств и размещения продукции, планирования производства пиломатериалов, планирования погрузки водного транспорта, раскроя и комплектовки в модели-

ровании технологических процессов в условиях стохастики производственного процесса, рассматриваются критерии эффективности подобных задач.

Теоретические предпосылки для создания автоматизированной системы управления раскроем в швейной промышленности описаны в работе , исследуется проблема параметрического моделирования сложных трехмерных объектов и его применения. В работе приведен краткий обзор существующих САПР конструкторской и технологической подготовки производства одежды. Одной из первых разработок в области САПР для конструктора швейных изделий явилась белорусская система «АВТОКРОЙ» (г. Минск), функционирующая в 80-е гг. в НПО «Белбыттехника». Первой системой, предназначенной специально для конструирования одежды с помощью персонального компьютера, стала система ЛЕКО, разработки Центрального научно-производственного института швейной промышленности (ЦНИИШП). В настоящее время систему используют небольшие швейные и трикотажные предприятия, а также вузы, ведущие подготовку специалистов в области проектирования швейных изделий. Вслед за ЛЕКО появляется серия САПР: Система АССОЛЬ (Центр компьютерных технологий при Московском физико-техническом институте); Система T-FLEX/ОДЕЖДА использует типовые методики конструирования; ГРАЦИЯ и др. Одной из последних разработок стала система ELEANDR-CAD (Научно-технический центр дизайна и технологии при МГУДТ и компания ООО «Элеандр», 2003). В работе авторы исследуют задачу о минимальном покрытии на примере проектирования меховых изделий.

Исследования показали, что задачи, в которых требуется сформировать в определенном смысле оптимальное множество объектов (машин, наборов моделей одежды, приемов, свойств), покрывающее «потребности» другой совокупности (работ, клиентов, заказов, характеристик) при выполнении некоторых условий, обусловленных спецификой задачи, могут быть сведены к задачам о покрытии и различным их модификациям. На основе разработан гибридный алгоритм для решения задач оптимизации выбора объектов в процессе технической подготовки производства, в том числе при определении доминирующих свойств материалов, на примере легкой промышленности. Оригинальный подход к исследованию связи проблем ортогонального раскроя и покрытия на примере задач построения маршрутов, удовлетворяющих определенным ограничениям, приведен Т. Па-

нюковой, . Автором замечено, что в задачах раскроя листового материала плоский граф является моделью раскройного плана, а маршрут, покрывающий все ребра, определяет траекторию режущего инструмента. В работе приведена модификация алгоритма построения покрытия с упорядоченным охватыванием на случай многосвязного графа. Построение покрытия графа с упорядоченным охватыванием решает поставленную задачу раскроя. Наибольший интерес представляют покрытия с минимальным числом цепей, поскольку переход от одной цепи к другой соответствует холостому проходу режущего инструмента.

Пример применения генетических алгоритмов для автоматизации размещения разногабаритных тепловыделяющих элементов в электронных модулях трехмерной компоновки на основе теплового критерия приведен в работе .

Решению задачи размещения грузов в грузовых отсеках транспортных средств, возникающей в качестве подзадачи в логистических системах, посвящены многие работы. Например, в решается задача управления загрузкой контейнеров с учетом их физических характеристик, в для этой задачи осуществляется учет условия технологичной загрузки-разгрузки потребительских товаров, т.е. последовательность посещения клиентов при доставке грузов.

В работе предложен алгоритм решения задачи, возникающей, например, в строительной индустрии - задачи геометрического покрытия многосвязного полигона ортогональным ресурсом. Исходной информацией являются размеры покрываемой области и имеющегося ортогонального ресурса, а размеры покрывающих элементов, которые необходимо впоследствии раскроить из ресурса, заранее не определены. Это обуславливает многокритериальную оптимизацию процесса построения взаимосвязанных рациональных планов геометрического покрытия прямоугольными элементами незаданных размеров и раскроя ортогонального ресурса на покрывающие элементы.

Технологические особенности раскройного оборудования обуславливают появление задач проектирования управляющих программ для машин листовой резки. В работе автором отмечается важность проблемы стоимости и значимости различных этапов процесса вырезания заготовок из материального ресурса, таких как, например, перемещение режущего инструмента в другое место раскраиваемого листа и новой резки. Таким образом, кроме плотного размещения заготовок на плане раскроя, целевая функция направлена на оптимизацию маршрута

режущего инструмента с учетом стоимости ре-зов, новой врезки.

Значительное внимание уделяется также и теоретическим разработкам проблемы раскроя и упаковки. Например, в работах рассмотрены задачи упаковки гофров (ортогональных связных многоугольников) с позиций общей теории проблемы оптимального размещения геометрических объектов, предложены алгоритмы упаковки «-мерных гофров на базе методов линейного программирования, а также модели и методы оптимизации упаковки «-мерных параллелепипедов.

ЗАКЛЮЧЕНИЕ

Многообразие раскройных задач вместе со значимостью их рационального решения обуславливает неугасающий интерес опытных и молодых исследователей всего мира к этой проблематике, с чем связана устойчивая тенденция роста численности новых методик для их решения.

В задачах C&P замечательным образом сочетается их широкая практическая применимость и их принадлежность к NP-трудным проблемам, что делает эту проблематику важным полигоном новых исследований. Благодаря этому идеи Л. В. Канторовича будут использоваться и развиваться в различных сферах научной и практической деятельности человека, связанной с проблемой раскроя.

СПИСОК ЛИТЕРАТУРЫ

1. Канторович Л. В. Математика, менеджмент, информатика: монография / ред.: Г. А. Леонов, В. С. Катькало, А. В. Бухвалов, СПб.: Высш. шк. менеджмента: Издательский дом Санкт-Петербургского ун-та, 2010. 575 с. [ L. V. Kantorovich, Mathematics, management, informatics: monograph, (in Russian). Edited by G. A. Leonov, V. S. Katcalo, and A. V. Buhvalov, St.Ptsb.: Management higher school: St. Petersbourg University Publishing House, 2010. ]

2. Канторович Л. В. Математические методы организации и планирования производства. ЛГУ, 1939. 67 с. . [ L. V. Kantorovich, Mathematical Methods of Production Management and Planning, (in Russian). Leningrad: Leningrad Univ., 1939.]

3. Канторович Л. В. Рациональные методы раскроя металла // Произв.-техн. бюл. НК Боеприпасов СССР. 1942. № 7-8. С. 21-29. [ L. V. Kantorovich, "Efficient Methods of Metal Cutting," (in Russian), Product.-techn. bulletin. of NK Ammunition of the USSR, no. 7-8, pp. 21-29, 1942. ]

4. Фельдман Х. Л. Система максимальных поставов на распиловку. М.: Гостехиздат, 1932. [ H. L. Feldman, Maximum delivery system for sawing, (in Russian). Moscow: Gostehizdat, 1932. ]

5. Залгаллер В. А. Новое в составлении поставов для распиловки бревен. Л.:ЦНИИЛ «Севзаплес», 1956. Вып. 67. [ V. A. Zalgaller, A step forward in delivery formation for timber sawing, (in Russian). Leningrad: CNIIL "Sevzaples", vol. 67, 1956. ]

6. Валиахметова Ю. И., Мухачева Э. А., Филиппова А. С., Гильманова Н. А., Карипов У. А. Мультиметодная

технология ортогональной упаковки и ее применение в задачах транспортной логистики // Приложение к журналу «Информационные технологии». 2009. № 12. 31 с. [ U. I. Valiahmetova, et al., "Multimethod technology of orthogonal bin-packing and its application in transport logistics problems," (in Russian), in Appendix to Magazine Information technologies, no. 12, 2009. ]

7. Мухачева Э. А., Мухачева А. С., Валеева А. Ф., Картак В. М. Методы локального поиска в задачах ортогонального раскроя и упаковки: аналитический обзор и перспективы развития // Информационные технологии. 2004. № 5. Приложение. С. 2-17. [ E. A. Mukhacheva, et al., "Local search methods in orthogonal cutting-packing problems: analytical survey and development outlook," (in Russian), in Appendix to magazine Information Technologies, no 5, pp. 2-17, 2004. ]

8. Канторович Л. В., Залгаллер В. А. Расчет рационального раскроя материалов. Лениздат, 1951. 198 с. [ L. V. Kantorovich and V. A. Zalgaller, Computation of effective material cutting , (in Russian). Lenizdat, 1951. ]

9. Булавский В. А., Яковлева М. А. О решении задачи оптимального раскроя линейных материалов на ЭВМ // Линейное программирование: Труды Науч. совещ. о применении матем. методов в экон. исслед и планировании. М.: АН СССР, 1961. Т. IV. С. 83-87. [ V. A. Bulavski and M. A. Jakovleva, "To solution of problems of linear material cutting on COMPUTER," (in Russian), in Linear programming. Papers of scientific conference on mathematical method application in econom. research and planning, vol. IV. Moscow: AS USSR, 1961, pp. 83-87. ]

10. Мухачева Э. А. Рациональный раскрой прямоугольных листов на прямоугольные заготовки // оптимальное планирование: c6. науч. тр. СО АН СССР. 1966. Вып. 6. С. 43-115. [ E. A. Mukhacheva, "Effective cutting of rectangular sheets to rectangular items," (in Russian), in Optimal planning: Collection of scientific papers SO AS USSR, Issue 6, pp. 43-115, 1966. ]

11. Романовский И. В. Решение задачи гильотинного раскроя методом переработки списка состояний // Кибернетика. 1969. № 1. С. 102-104. [ I. V. Romanovski, "Solution of guillotine cutting problem by the method of sorting out of the state list," (in Russian), Cybernetics, no. 1, pp. 102-104, 1969. ]

12. Мухачева Э. А. Методы условной оптимизации в задаче рационального раскроя листового проката // Оптимизация: c6. науч. тр. СО АН СССР. 1978. Вып. 22. С. 83-93. [ E. A. Mukhacheva, "Methods of conditional optimization in the problem of effective cutting of sheet rolling," (in Russian), in Optimization: Collection of scientific papers SO AS USSR, 1978, Issue 22, pp.83-93. ]

13. Романовский И. В. Программа решения задачи линейного раскроя. - Оптимальное планирование. Новосибирск. 1969. Вып.12. [ I. V. Romanovski, "Program of solving the linear cutting problem," (in Russian), in Optimal planning, Novosibirsk, 1969, Issue 12. ]

14. Картак В. М. Обновленная нижняя граница для задачи упаковки прямоугольников в полубесконечную полосу // Вестник УГАТУ. 2008. Т. 10, № 2 (27). С. 154-158. [ V. M. Kartak, "A new low bound for orthogonal packing problem," (in Russian), Vestnik UGATU, vol. 10, no. 2 (27), pp. 154158, 2008. ]

15. Belov G., Kartak V., Rohling H., Scheithauer G. One-dimensional relaxations and LP bounds for orthogonal packing // ITOR, 2009. Vol. 16. P. 745-766. [ G. Belov, et al. "One-dimensional relaxations and LP bounds for orthogonal packing," ITOR, vol. 16, p. 745-766, 2009. ]

16. Картак В. М. Матричный алгоритм поиска оптимального решения для задачи упаковки прямоугольников в полубесконечную полосу // Информационные технологии. 2008. № 2. С. 24-30. [ V. M. Kartak, "Matrix algorithm for searching the optimum solution of rectangular packing in a semi-endless strip," (in Russian), Information technologies, no. 2, pp.24-30, 2008. ]

17. Марков В. Н. База знаний для негильотинного раскроя-упаковки // Информационные технологии. 2007. № 4. С. 17-23. [ V. N. Markov, "Basic knowledge for nonguillotine cutting-packing," (in Russian), Information technologies, no 4, pp. 17-23, 2007. ]

18. Романовский И. В., Христова Н. П. Решение дискретных минимаксных задач методом дихотомии // Ж. вычислит. математики и матем. физики. 1973. Т. 13, № 5. С. 1200-1209. [ I. V. Romanovski and N. P. Hristova, "Solution of discrete minimax problems by dichotomy method," (in Russian), J. of calculat. math. and math. Physics, vol. 13, no. 5, pp. 1200-1209, 1973. ]

19. Стоян Ю. Г., Яковлев С. В. Математические модели и оптимизационные методы геометрического проектирования. Киев: Наукова думка, 1986. 268 с. [ U. G. Stojan and S. V. Jakovlev, Mathematical models and optimization methods of geometrical projecting, (in Russian). Kiev: Naukova dumka. 1986. ]

20. Рвачев В. Л., Стоян Ю. Г. К задаче об оптимальном размиещении круговых выкроек // Кибернетика. 1965. № 4. [ V. L. Rvachev and U. G. Stojan, "To the problem of optimal placement of round patterns," (in Russian), Cybernetics, no. 4, 1965. ]

21. Stoyan Y., Terno J., Romanova T., Scheithauer G.

Construction of a Ф-function for two convex polytopes // Applications Mathematicae. 2002. V. 2, No. 29. P. 199-218. [ Y. Stoyan, J. Terno, T. Romanova, and G. Scheithauer, "Construction of a Ф-function for two convex polytopes," Applications Mathematicae, vol. 2, no. 29, pp. 199-218, 2002. ]

22. Verhoturov M. A., Sergeyeva O. Y. The sequential value correction method for the two-dimensional irregular cutting stock problem // PO. 2000. Vol. 20, № 2. P. 233-247. [ M. A. Verhoturov and O. Y. Sergeyeva, "The sequential value correction method for the two-dimensional irregular cutting stock problem," vol. 20, no. 2, pp. 233-247, 2000. ]

23. Бабаев Ф. В. Рациональный раскрой листа на детали сложных геометрических конфигураций // Сварочное произв. 1968. № 8. [ F. V. Babaev, "Effective sheet cutting into items of complex geometric configurations," (in Russian), Welding production, no. 8, 1968. ]

24. Канторович Л. В., Залгаллер В. А. Рациональный раскрой промышленных материалов. 3-е изд. СПб: Невский Диалект, 2012. 304 с. [ L. V. Kantorovich and V. A. Zalgaller, Effective cutting of industrial material, Issue 3, (in Russian). St. Petersbourg: Nevskij dialect, 2012. ]

25. Соболев И. В. Управление производством пиломатериалов. М.: Лесн. пром-сть, 1981. 181 с. [ I. V. Sobolev, Timber production control, (in Russian). Moscow: Timber prod., 1981. ]

26. Кузнецов В. А., Шегельман И. Р. Применение математических методов и ПЭВМ на лесоразработках. СПб.: СПбЛТА, 1988. 68 с. [ V. A. Kuznetsov and I. R. Shegelman, Application of mathematical methods and PC in logging areas, (in Russian). St.Petersbourg: Publishing house St. Ptsb, LTA, 1988. ]

27. Кузнецов В. А. Задачи раскроя в целлюлозно-бумажной промышленности. СПб.: СПбЛТА, 2000. 132 с. [ V. A. Kuznetsov, Cutting problems in pulp and paper industry, (in Russian). St. Ptsb: Publishing house St. Ptsb. LTA, 2000. ]

28. Колоколов А. А. О числе отсекающих плоскостей в первом алгоритме Гомори // Проблемы анализа дискретной информации. Новосибирск: ИЭиОПП СО АН СССР, 1975. С. 84-96. [ A. A. Kolokolov, " About the number of cut-ting-off planes in the first algorithm of Gomory," (in Russian), in Problems of discrete information analysis, Novosibirsk: IEOIP SO AS USSR, 1975, pp.84-96. ]

29. Колоколов А. А. Регулярные разбиения и отсечения в целочисленном программировании // Сибирский журнал исследования операций. 1994. № 2. С. 18-39. [ A. A. Kolokolov, "Regular splitting and cutting off in integr programming," (in Russian), Siberian journal of operational research, no. 2, pp. 18-39, 1994. ]

30. Колоколов А. А., Коробова А. Б., Захарова Е. О., Привалова Ю.И. Разработка моделей дискретной оптимизации для формирования коллекции подростковой одежды // Омский научный вестник. 2006. № 7 (43). С. 138-140. [ A. A. Kolokolov, et al., "Development of discrete optimization models for designing teenagers" clothes," (in Russian), The Omsk scientific bulletin, no. 7 (43), pp. 138-140, 2006. ]

31. Фроловский В. Д., Фроловский Д. В. Моделирование и развертка сложных поверхностей в AutoCAD R14 // САПР и графика. 1998. № 3. С. 74-75. [ V. D. Frolovski and D. V. Frolovski, "Modeling and evolvent of complex surfaces in AutoCAD R14," (in Russian), SAD and graphics, no. 3, pp.74-75, 1998. ]

32. Ландовский В. В., Пищинская О. В., Фролов-ский В. Д. Моделирование процесса проектирования одежды на женские фигуры с нарушениями осанки. // Известия высших учебных заведений. Северо-Кавказский регион. Серия техн. наук. 2009. № 6. С. 114-118. [ V. V. Landovski, O. V. Pischinskaja, and V. D. Frolovski, "Modeling of the process of designing clothes for women"s figures of defect posture," (in Russian), Bulletin of highest schools, North-Caucasus region. Series tech. science, no. 6, pp. 114118, 2009. ]

33. Коробцева Н. А. САПР одежды: исторический экскурс и обзор существующих систем // Текстильная промышленность. 2003. № 5. С. 61-62; № 6. С. 63-65. [ N. A. Korobtsev, "SAD of clothing: historical excursus and present systems review," (in Russian), Textile industry, no. 5, pp. 61-62, no. 6, pp. 63-65, 2003. ]

34. Петунин А. А. Интегрированная САПР «Сириус» для автоматизации раскройно-заготовительного производства. Концепция. Опыт разработки и внедрения // Ресурсосберегающие технологии: математическое обеспечение оптимизационных задач в системах автоматизированного проектирования: сб. докл. 1-й Всерос. науч.-практ. конф. по вопросам решения оптимизационных задач в промышленности. СПб: ЦНИИТС, 2001. C. 126-129. [ A. A. Petunin, "Integrated SAD "Sinus" for automation of cutting--logging production. Concept. Experience of development and implementation," (in Russian), in Resource-saving technologies: Mathematical ensuring of optimization problems in systems of automat designing: Collection of reports 1st All-Union scientific--practical conference on solution of optimization problems in industry, St. Ptsb: CRITS, 2001, pp. 126-129. ]

35. Петунин А. А. Оптимизация маршрута инструмента для машин резки листового материала // Компьютерные науки и информационные технологии: Междунар. науч. изд.: матер. 13-й междунар. конф. CSIT"2011 (Гар-миш-Пантеркирхен, Германия, 27 сент. - 2 окт. 2011). Уфа, 2011. Т. 1. С. 179-182. [ A. A. Petunin, "Tool route optimization for structural sheet cutting machines," in Proc. 13th workshop on Computer Sciences and Informational Technologies, (CSIT"2011) Garmish-Panterkirhen, Germany, 2011, (in Russian), Ufa, 2011, vol. 1, pp. 179-182. ]

36. Новожилова М. В. Решение задачи поиска глобального экстремума линейной функции цели на структуре линейных неравенств: препринт. АН УССР, Ин-т проблем машиностр. Харьков, 1988. 48 с. [ M. V. Novozhilova, Solving the problem of global extremum search for linear goal function on the basis of linear inequality structure, (in Russian). Preprint. AS Ukr.SSR. Institute of engineering industry problems. Kharkov, 1988. ]

37. Кацев С. Б. Об одном классе дискретных минимаксных задач // Кибернетика. 1979. № 5. С. 139-141. [ S. B. Katsev, "About one class of discrete minimax problems," (in Russian), Cybernetics, no. 5, pp. 139-141, 1979. ]

38. Липовецкий А. И. К оптимизации свободного размещения прямоугольников // Автоматизация проектирования в машиностроении. 1985. С. 80-87. [ A. I. Lipovetski, "To optimization of rectangular free placement," (in Russian), Automation design in engineering industry, Minsk, pp. 80-87, 1985. ]

39. Аккуратов Г. В., Березнев В. А., Брежнева О. А.

О методе решения уравнения с булевыми переменными // Принятие решений в условиях неопределенности: межвуз. науч. сб. Уфа: УАИ, 1990. С. 145-154. [ G. V. Accuratov, V. A. Bereznev, and O. A. Brezhneva, "About the method of solving equation with Boolean variables," (in Russian), Making decision under uncertainty conditions. Interinstitute scientific collection, Ufa: USATU, pp. 145-154, 1990. ]

40. Mukhacheva E. A., Zalgaller V. A. Linear programming cutting problems // Int. J. of Software Engineering and Knowledge Engineering. 1993. V. 3, No. 4. P. 463-476. [ E. A. Mukhacheva and V. A. Zalgaller, "Linear programming cutting problems," Int. J. of Software Engineering and Knowledge Engineering, vol. 3, no. 4, pp. 463-476, 1993. ]

41. Мухачева А. С., Валеева А. Ф., Картак В. М. Задачи двумерной упаковки в контейнеры: новые подходы к разработке методов локального поиска оптимума. М.: МАИ, 2004. 193 с. [ A. S. Mukhacheva, A. F. Valeeva, and V. M. Kartack, Problems of 2D packings into containers: new approaches to development of local optimum search methods, (in Russian). Moscow: MAI, 2004. ]

42. Мухачева А. С. Технология блочных структур локального поиска оптимума в задачах прямоугольной упаковки // Информационные технологии. Приложение. 2004. № 5. С. 18-31. [ A. S. Mukhacheva, "Technology of block structures for optimumlocal search in rectangular bin-packing problems", (in Russian), in in Appendix to Magazine Information technologies. Appendix, no. 5, pp. 18-31, 2004. ]

43. Кочетов Ю. А. Вероятностные методы локального поиска для задач дискретной оптимизации // Дискретная математика и ее приложения: c6. лекций молодежн. и науч. шк. по дискретной математике и ее приложениям. М.: Изд-во центра прикладных исследований при мех.-матем. ф-те МГУ, 2000. С. 87-117. [ U. A. Kochetov, "Probabilistic methods of local search for discrete optimization problems," (in Russian), in Discrete mathematics and its application. Collection of lectures of student and scientific schools on discrete mathematics and its applications, Moscow: Publishing house of the applied research center of the mech.-maths depart. MSU, 2000, pp. 87-117. ]

44. Норенков И. П. Эвристики и их комбинации в генетических методах дискретной оптимизации. // Информационные технологии. 1999. № 1. С. 2-7. [ I. P. Norenkov, "Heuristics and their combinations in discrete optimization genetic methods," (in Russian), in Appendix to Magazine Information technologies, no. 1, pp. 2-7, 1999. ]

45. Мухачева А. С., Чиглинцев А. В., Смагин М. А., Мухачева Э. А. Задачи двумерной упаковки: развитие генетических алгоритмов на базе смешанных процедур локального поиска оптимального решения // Информационные технологии. Приложение. 2001. № 9. 28 c. [ A. S. Mukhacheva, et al., "2D bin--packing problems: development of genetic algorithms based on compound procedures of local search for optimal solution," (in Russian), in Appendix to Magazine Information technologies, no. 9, 2001. ]

46. Frolovsky V. D., Pushkaryova G. V. Metal cutting motion optimization for NC-programs design, using genetic algorithms. Proc. of the 6th Int. Conf. on Computer Graphics and Artificial Intelligence, Limoges (France), May 14-15, 2003. P. 143-152. [ V. D. Frolovsky and G. V. Pushkaryova, "Metal cutting motion optimization for NC-programs design, using genetic algorithms," Proc. of the 6th Internat. Conf. on Computer Graphics and Artificial Intelligence, Limoges (France), May 14-15, 2003, pp. 143-152. ]

47. Корчевская О. В., Жуков Л. А. Получение нижних границ для задач двух и трехмерной ортогональной упаковки [Электронный ресурс] // Исследовано в России: электронный журнал. 2008. 62. С. 685-694. URL: http:// zhurnal.ape.relarn/articles/2008/062.pdf [ O. V. Korchevskaja, L. A. Zhukov, "Low boundaries procure for 2G and 3D orthogonal bin-packing problems," (in Russian), Electronic magazine "Investigated in Russia", 62, 2008. pp. 685-694, http:// zhurnal.ape.relarn/articles/2008/062.pdf ]

48. Mukhacheva E., ed. Special issue: Decision making under conditions of uncertainty (cutting-packing problems) // The International Scientific Collection. 1997. Ufa, Russia. [ E. Mukhacheva, ed. Special issue: Decision making under conditions of uncertainty (cutting-packing problems). The International Scientific Collection, Ufa, Russia, 1997. ]

49. Sergeyeva O., Scheithauer G., Terno J. The value correction method for packing of irregular shapes // Decision making under conditions of uncertainty (cutting-packing problems): The Int. Sci. Collection. Ufa, 1997. P. 261-270. [ O. Sergeyeva, G. Scheithauer, and J. Terno, "The value correction method for packing of irregular shapes," Decision making under conditions of uncertainty (cutting--packing problems). The International Scientific Collection, Ufa, 1997, pp. 261-270. ]

50. Belov G., Kartak V., Rohling H., Scheithauer G. One-dimensional relaxations and LP bounds for orthogonal packing. ITOR, 2009. V. 16. P. 745-766. [ G. Belov, et al., "One-dimensional relaxations and LP bounds for orthogonal packing," ITOR, vol. 16, pp. 745-766, 2009. ]

51. Фроловский В. Д. Параметрическое моделирование и идентификация трехмерных объектов со сложной структурой // Информационные системы и технологии: матер. Междунар. науч.-техн. конф.. Новосибирск: НГТУ, 2003. Т. 1. С. 153-155. [ V. D. Frolovski, "Parametric simulation and identification of 3D objects with complicated structure," (in Russian), in Proc. Int. Sci.-Tech. Conference "Informational Systems and Tecnnologies", Novosibirsk, NGTU, 2003, vol. 1, pp. 153-155. ]

52. Колоколов А. А., Нагорная З. Е., Архимен-ко М. Ю., Иванова С. Д. Проектирование меховых изделий с использованием математического моделирования // Динамика систем, механизмов и машин: матер. IV Междунар. науч.-техн. конф., посвящ. 60-летию ОмГТУ. Кн. 1. Омск: ОмГТУ, 2002. С. 297-299. [ A. A. Kolokolov, et al., "Fur goods design using mathematical modeling, Dynamics of systems, mechanisms and machines," (in Russian), in Proc. 4 Int. Sci.-Tech. Conference to the 60 anniversary of OmGTU, vol.1, Omsk, 2002, pp. 297-299. ]

53. Панюкова Т. А. Оптимальные Эйлеровы покрытия с упорядоченным охватыванием для плоских графов // Дискретный анализ и исследование операций. Март-апрель, 2011. Т. 18, № 2. С. 64-74. [ T. A. Panukova, "Optimal Euler coverings with ordered union for flat graphs," (in Russian), in Discrete analysis and operational research, MarchApril, vol. 18, no. 2, pp. 64-74, 2011. ]

54. Новиков И. С. Автоматическое размещение разногабаритных электронных элементов посредством генетического поиска с миграцией // Проектирование и технология электронных средств. 2007. № 1. C. 33-38. [ I. S. Novikova, "Automatical allocation of electronic elements of different sizes by genetic search with migration," (in Russian), in Design and technology of electronic facility, no. 1, pp. 33-38, 2007. ]

55. Мухачева Э. А., Валеев Р. С. Локальный поиск размещения товарных позиций на базе анализа их номенклатурной принадлежности // Информационные технологии. 2010. № 6. С. 18-23. [ E. A. Mukhacheva and R. S. Valeev, "Local search of Commodity allocation based on their product range," (in Russian), in Informational Technologies, no. 6, pp. 18-23, 2010. ]

56. Мухачева Э. А., Бухарбаева Л. Я., Филиппов Д. В., Карипов У. А. Оптимизационные проблемы транспортной логистики: оперативное размещение контейнеров при транспортировке грузов // Информационные технологии. 2008. № 7. С. 17-22. [ E. A. Mukhacheva, et al., "Optimization problems of transportation logistics; containers operational allocation while cargo conveying," (in Russian), Information Technologies, no. 7, pp. 17-23, 2008. ]

57. Телицкий С. В., Филиппова А. С. Комплексный подход к решению задачи покрытия области заготовками неопределенных размеров // Научно-технические ведомости СПбГПУ. Информатика. Телекоммуникации. Управле-

ние. 2 (145) / 2012, СПб., 2012. С. 61-67. [ S. V. Telitskiy and A. S. Filippova, "Complex approach to solving the problem of area covering with items of non-defined sizes," (in Russian), in Nauchno-tehnicheskye Vedomosty SPbGPU, Informatics. Telecommunication. Management, 2(145)/2012, StPsb, pp. 61-67, 2012. ]

58. Васильева Л. И. Алгоритмы упаковки N-мерных гофров на базе методов линейного программирования: дис. ... канд. техн. наук / УГАТУ, 2000. [ L. I. Vasilyeva, "Packing algorithms od N-dimensionv corrugations based on linear programming methods," (in Russian): Dissertation for scientific degree of a Cand. of Tech. Sci, UGATU, 2000. ].

59. Картак В. М. Модели и методы оптимизации упаковки n-мерных параллелепипедов: дис. ... канд. физ.-мат. наук / УГАТУ, 1999. [ V. M. Kartak, "Models and methods of optimization of n-dimensional parallelepiped packing," (in Russian): Dissertation for scientific degree of a Cand. of phisics-maths Sci, UGATU, 1999. ]

ВАЛИАХМЕТОВА Юлия Ильясовна, доц. каф. математики. Дипл. инж. (УГАТУ, 2004). Канд. техн. наук по мат. моде-лир., числ. методам и комплексам программ (УГАТУ, 2008). Иссл. в обл. оптимизац. задач раскроя-упаковки. ФИЛИППОВА Анна Сергеевна, проф. каф. прикладной информатики. Дипл. инж. (УГАТУ, 1996). Д-р техн. наук мат. моделир., числ. методам и комплексам программ (СГАУ, 2007). Иссл. в обл. комбинаторных алгоритмов.

Title: Theory of optimum resource utilization by L. V. Kanto-rovich in cutting-packing problems: overview and history of development of solving methods Authors: Yu. I. Valiakhmetova, A. S. Filippova. Affiliation:

1 Bashkir State Agrarian University (BSAU), Russia.

2 Bashkir State Pedagogical University of M. Akmulla(BSPU), Russia.

Email: [email protected], [email protected]. Language: Russian.

Source: Vestnik UGATU (scientific journal of Ufa State Aviation Technical University), vol. 18, no. 1 (62), pp. 186-197, 2014. ISSN 2225-2789 (Online), ISSN 1992-6502 (Print). Abstract: The article presents examples of solution techniques for cutting-packing problems, which are still relevant to this day taking into account their diversity and many-sided applicability. The scientific papers by L. V. Kantorovich are considered to be fundamental for the development of these procedures. The article gives an overview of procedures for solving cutting-packing problems that have been developed by Soviet and Russian scientists in the last 80 years, including various scientific schools of the USSR and Russia. Summary of solving procedures and the history of their development are also described. Key words: cutting, optimum use of resources, optimization, exact methods, heuristic methods.

VALIAKHMETOVA, Yuliya Ilyasovna, Associate Prof., Dept. of Mathematics, Dipl. Engineer-programmer (UGATU, 2004). Cand. of Tech. Sci. (UGATU, 2008). FILIPPOVA, Anna Sergeevna, Prof., Dept. of Applied Informatics. Dipl. Systems Engineer (UGATU, 1996). Cand. of Tech. Sci. (Ufa State Univ., 1999)., Dr. of Tech. Sci. (Samara State Aerospace Univ., 2007).

До середины ХХ в. экономисты-теоретики игнорировали математические модели исследования. Однако, несмотря на притеснения, математики продолжали работать и достигли блестящих результатов. Среди них - представители математической школы Л. Канторович и Т.-Ч. Купманс.
Канторович (Kantorovich) Леонид Витальевич (1912-1986) - советский экономист, лауреат Нобелевской премии (1975). Родился в Петербурге, учился в Ленинградском университете. В 1930 г. Л. Канторович был участником Всесоюзного математического съезда. В этом же году закончил университет, а уже через четыре года ему присвоили звание профессора. В 1930-1939 гг. работал в Ленинградском институте инженеров промышленного строительства, потом (до 1948) - заведующим кафедрой Высшего инженерно-технического училища.
В 1935 г. стал доктором физико-математических наук; до 1960 г. он - профессор Ленинградского университета. Ему принадлежат первоклассные результаты по функциональному анализу, теории функций, вычислительной математике. Широкое признание приобрели его работы по дескриптивной теории функции и теории множества, по конструктивной теории функций, приблизительным методам анализа; он заложил основы нового направления функционального анализа - теории полуупорядоченных векторных пространств, которые названы «К-пространствами». Феномен Л. Канторовича в том, что он одновременно был талантливым математиком и экономистом, который внес коррективы в понимание экономических явлений, расширил экономическое мышление, стал основоположником оригинальной экономической школы.
В 1958 г. вместе с В. Немчиновым Л. Канторович создал Лабораторию по внедрению статистических и математических методов в экономике.
Л. Канторович принимал участие в создании Сибирского отделения Академии наук СССР. Осенью 1960 г. в Ленинграде возглавил группу математиков и экономистов, которая переехала в Новосибирск и вошла в состав Института математики Сибирского отделения АН СССР как математико-экономический отдел. Одновременно работал профессором Новосибирского университета. В 1971 г., переехав в Москву, ученый возглавлял Проблемную лабораторию в Институте управления народным хозяйством Государственного комитета Совета Министров СССР по науке и технике.
Является автором работ: «Методы приблизительного решения дифференциальных уравнений в частных производных» (в соавторстве с В. Крыловым) (1963), «Функциональный анализ в полуупорядоченных пространствах» (в соавторстве с Б. Вулихом и А. Пинскером) (1949), «Функциональный анализ и прикладная математика» (1948), «Экономический расчет наилучшего использования ресурсов» (1959), «Функциональный анализ в нормированных пространствах» (в соавторстве с Г. Акиловым), «Динамическая модель оптимального планирования» (1967), «Ценообразование и технический прогресс» (1979) и др.
Л. Канторович - почетный член Международного Эконометрического общества, почетный доктор Гренобльского, Хельсинского, Йельского, Парижского, Кембриджского, Пенсильванского университетов, а также университетов в Варшаве, Глазго, Мюнхене, Ницце и имени Мартина Лютера в Халле, Статистического института в Калькутте. Награжден двумя орденами Ленина.
Важнейшим вкладом Л. Канторовича явилась теория оптимального распределения ресурсов.
Теория оптимального распределения ресурсов - теория, которая предусматривает формулирование статистической и динамической моделей текущего и перспективного планирования использования ресурсов на базе новых математических подходов в сфере системного построения экономических показателей, используемых для анализа ценообразования, эффективности капитальных вложений.
Впервые основы теории оптимального распределения ресурсов он изложил в работе «Математические методы организации и планирования производства» (1939). В ней он представил принципиально новый класс экстремальных задач с ограничениями, разработав эффективный метод их решения. Именно в это время ученый сформулировал задачу составления плана и системы цен как взаимозависимых компонентов неделимой двойственности. Ведь время невозможно одновременно минимизировать издержки и максимизировать результаты. Одновременно эти два подхода взаимосвязаны: если найдем оптимальную схему перевозок, то ей соответствует определенная система цен. Если определим оптимальные значения цен, то сравнительно легко получить схему перевозок, что соответствует требованиям оптимальности.
Основой этой теории является метод линейного программирования.
Линейное программирование - решение линейных уравнений (уравнений первой степени) путем сложения программ и внедрения разных методов их последовательного решения, что существенно облегчает расчеты и достижение результатов.
Его началом стал поиск решения практической задачи. В 1937 г. к профессору Ленинградского университета Л. Канторовичу обратились инженеры местного фанерного треста с просьбой найти эффективный способ для обеспечения наивысшей производительности труда. Для обработки 5 видов материала выделили 8 станков с определенной производительностью каждого из них по каждому виду материала.
Другими словами, нужно было решить конкретную технико-экономическую задачу с целевой функцией («функционалом») - максимизировать выпуск готовой продукции. Известными на тот момент методами это сделать было трудно, поскольку было необходимо решить почти миллиард алгебраических уравнений. Л. Канторович предложил метод линейного программирования, который стал новым разделом в математике и получил признание в экономической практике, способствовал развитию и использованию электронно-вычислительной техники.
Ученый понимал важность создания математической основы для решений типовой хозяйственной задачи. Условия задачи на оптимальность и цель могут выражаться с помощью системы линейных уравнений. Неизвестные в них только первой степени; ни одно неизвестное не умножается на другое неизвестное. Такие уравнения выражают зависимости, которые можно изобразить на графике прямыми линиями. Поскольку уравнений меньше, чем неизвестных, то задача имеет несколько вариантов решения, а найти необходимо один.
В задаче по оптимизации выпуска фанеры Л. Канторович ввел переменную, которую следует максимизировать, в виде суммы стоимостей продукции, произведенной всеми станками. Ограничения были изложены в форме уравнений, устанавливающих соотношения между всеми факторами, затрачиваемыми в производстве (деревом, клеем, электроэнергией, рабочим временем), и количеством произведенной продукции (фанеры) на каждом станке. Для показателей факторов производства были введены коэффициенты, названные «решающими множителями» (мультипликаторами). С их помощью решается поставленная задача. Если значения решающих множителей известны, то необходимые величины, в частности оптимальный объем производимой продукции, можно сравнительно легко найти.
Л. Канторович обосновал экономическую сущность предлагаемых им решающих множителей. Они, собственно, являются предельными стоимостями ограничивающих факторов. То есть это объективные цены каждого из факторов производства относительно условий конкурентного рынка. Для решения задачи на оптимальность ученый использовал метод последовательных приближений, последовательного сопоставления вариантов с выбором наилучшего в соответствии с условиями задачи.
Внедренный Л. Канторовичем термин «решающие множители» в более поздних трудах получил несколько другую интерпретацию и другую формулировку - «объективно обусловленные оценки». Эти оценки не произвольны, их величины объективно обусловлены, они задаются конкретными условиями задачи. Значения этих оценок подходят только для конкретной задачи и, в отличие от цен, задаются не извне, а определяются самим предприятием для внутреннего пользования. Ученый предлагал рассчитать их в разработке планов; на эти показатели могут опираться предприятия при расчете затрат и объемов производства продукции. Объективно обусловленные оценки корректируются в зависимости от соотношения спроса и объемов производства. Внедренные
в практику планирования и управления такие расчеты должны оптимизировать использование ресурсов.
Задачи линейного программирования были известны еще в конце ХVIII в. Однако начали решать их только после публикаций работ Л. Канторовича. В США исследования по линейному программированию начались только в конце 40-х годов ХХ в. Транспортная задача Хичкока и симплекс-метод Данцига, которые близки по характеру к методу решения задач линейного программирования Канторовича, были разработаны на десятилетие позднее.
На оригинальный подход Л. Канторовича до 50-х годов почти не реагировали. Обобщив свои исследования, он расширил сферу анализа.
В работе «Экономический расчет наилучшего использования ресурсов» и в следующих работах он внедрил свой метод линейного программирования для исследования широкого круга проблем планирования, в том числе и на национальном уровне.
Несколько позднее, но независимо от Л. Канторовича подобную методологию предложил Т.-Ч. Купманс.
Купманс (Koopmans) Тъяллинг-Чарльз (1910-1985) - американский экономист, лауреат Нобелевской премии (1975). Родился в Гравеланде (Нидерланды). Получил образование в Утрехтском университете. Увлекался сначала математикой и физикой, работал физиком, а под впечатлением от Великой депрессии начал заниматься экономикой.
С 1934 г. в Амстердамском университете изучал проблему общего равновесия. Докторскую диссертацию на тему «Линейный регрессивный анализ экономических временных рядов» защитил в 1936 г. в Лейденском университете. Преподавал экономику и занимался научно-исследовательской деятельностью в Нидерландском экономическом институте в Роттердаме.
В 1938-1940 гг. работал экспертом Лиги Наций по вопросам денежного оборота. Эмигрировал в США. Преподавал в Нью-Йоркском, Чикагском, Гарвардском университетах. С 1955 г. - профессор экономики Йельского университета. В 1950 г. был избран президентом Международного эконометрического общества, а в 1978 г. - президентом Американской экономической ассоциации.
Т.-Ч. Купманс был редактором и соавтором одного из первых фундаментальных трудов по линейному программированию «Анализ деятельности производства и распределения» (1951).
Ученому принадлежат важные достижения в разработке теории капитала, операционного анализа. Отдельные свои труды он посвятил оптимальному распределению производственных ресурсов, статистической оценке параметров в экономико-математических моделях.
Его детище - работы по статистике и математической экономике. Наибольшее признание получили работа «Анализ деятельности производства и распределения», подготовленная группой авторов под его руководством, а также работы «Статистическое заключение в динамических моделях экономики» (1950), «Три эссе о состоянии экономической науки» (1957) и др.
Т.-Ч. Купманс - заслуженный член Американской экономической ассоциации, почетный профессор Йельского университета, ему присвоены почетные ученые степени Нидерландской школы экономики, Северо-Западного и Пенсильванского университетов, Католического университета Лувена.
В 1944-1945 гг. по поручению англо-американского объединенного совета по регулированию мореплавания Т.-Ч. Купманс разработал план торгового мореплавания, который минимизировал возможность опасного торпедирования пустых грузовых суден фашистскими подводными лодками. Целью была минимизация холостого пробега суден.
Эту тему он затронул в работе «Соотношение между грузопотоками по различным маршрутам» (1942). Ученый показал, что проблему следует рассматривать как линейную функцию максимизации в пределах многих ограничений. Ограничения представил математическими уравнениями, которые выражают отношение количества затраченных факторов производства (амортизации суден, времени, трудовых затрат) к количеству доставленных в разные пункты назначения грузов. При этом величина любых затрат не может превышать явную сумму стоимости грузов, доставленных в каждый порт. Ученый пришел к выводу, что суть принципа линейного программирования заключается в том, что в оптимальном случае и по идеальным оценкам всех ресурсов издержки и результаты будут равными.
Работая в британской торговой миссии в Вашингтоне, Т.-Ч. Купманс использовал математический инструментарий и создал метод определения оптимального распределения ресурсов между конкурирующими потребителями. По этому методу можно было, например, рассчитать издержки на доставку миллионов тонн грузов, которые перевозятся тысячами суден морскими путями в сотни портов. Метод Т.-Ч. Купманса, который был назван «анализом деятельности фирмы», вошел в общую методологию линейного программирования.
В 1947 г. ученый озвучил свои выводы на международной конференции по статистике. В то время он активно разрабатывал и популяризировал методы линейного программирования. При его содействии в 1949 г. в Чикаго была проведена первая специальная конференция по линейному программированию.
В 1950 г. Т.-Ч. Купманс вместе со своими сторонниками завершили формулирование метода анализа деятельности фирмы. Модели этого типа так же, как и межотраслевые, линейные, однако у них каждый вид производственной деятельности может быть связан с выпуском нескольких товаров. К тому же существует возможность выбора между разными технологиями производства каждого вида продукции. Производственная модель типа анализа деятельности фирмы, как правило, содержит больше степеней свободы, чем обычная модель межотраслевого баланса, благодаря чему появляются естественные возможности для оптимизации. Именно поэтому анализ деятельности фирмы развивался в тесной связи с линейным программированием.

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

mob_info